

Distributed Power System Research Center

Grid-Forming Inverter-based Distributed Control for Microgrids

Ph.D. Hyeongjun Yoo Senior Researcher Distributed Power System Research Center, Smart Grid Research Division, KERI

Outline

- Introduction
- GFM Inverter Control Strategy
- Distributed Control Strategy
- Experimental Results
- Conclusion

Introduction

Power Grid Transformation

<Renewable energy share of global electricity production in 2004 vs 2019>

<Projected global DER market growth>

Challenges due to Increased IBRs (1)

(Hz)

Frequency

KERI 4

Frequency Stability Issues

Reduction in system inertia (Replacement of SG with IBR)

Reduced time to respond to frequency changes

Increased UFLS activation

Increased possibility of blackouts due to protective relay activation

- ✓ In Ireland, Texas, and South Australia, where IBR penetration is high, frequency stability problems occur during certain times of the day.
- Small island power systems such as New Zealand and Hawaii already face low inertiarelated challenges.

Challenges due to Increased IBRs (2)

Stability Issues in Weak Grids

- Failure to ride through disturbances
- Converter control interactions **
- Converter control instability

1.15

1.1

0.5 0.6 0.7 0.8 0.9

<Stiff grid>

Power (pu of installed rating

1.1 1.2

13 1

- Cycling between converter control modes
- Steady-state voltage collapse and power transfer

N-0 Voltage Control

-N-0 Const PF (pf=1.0)

Unstable recovery due to network transfer limits

Research Objective

GFM-based virtual inertia control technology – improving frequency stability

Distributed operation – Operation system without Central EMS

Overview

Development of GFM-based inverter and distributed operation technology for IBR to improve stability and resiliency

- Single grid-forming source(e.g. diesel,
- Grid-following inverter-based
- Requires complex infrastructure and communication
- It has a single point of failure, as a malfunction in the central controller can disrupt the entire system

Advanced Microgrid(Proposed technology)

- Distributed Operation without Centralized EMS
- Multiple grid-forming inverter-based resources
- More flexibility and scalability
- More reliable as there is no single point of failure
- Lower initial setup and operational costs

GFM-based VSG for ESS

Test of GFM-based VSG(H/W)

Is
Rs
Is
I

Image: Provide strain of the strai

Grid-connected Mode

✤ Islanded Mode

PQ control

Voltage & Frequency control

GFM Control Strategy for PV-Inverter

- Classification of control strategy for PV-inverter
 - DC link capacitor
 - Energy storage system
 - MPPT curve

<Virtual inertia using cap.>

<Virtual inertia using MPP characteristic>

<Virtual inertia using additional ESS>

GFM-based PV-VSG

KERI | 11

Virtual Inertia Technology for PV system

Structure of Distributed Operation Algorithm

KERI 12

Hierarchical Control for MG

<Distributed control layer>

Distributed Operation Algorithm

- Distributed control algorithm based on diffusion algorithm
 - Cost function

 $C_{e}(P_{e}^{ESS}) = \alpha_{e}^{ESS} (P_{e}^{ESS} + 3P_{e,\max}^{ESS} \cdot (DOD))^{2} + \beta_{e}^{ESS} (P_{e}^{ESS} + 3P_{e,\max}^{ESS} \cdot (DOD)) + \gamma_{e}^{ESS}$

Diffusion algorithm considering frequency restoration

$$\Phi[k] = (I - \varepsilon L)\lambda[k]$$
$$\lambda[k+1] = \Phi[k] - \mu \nabla \Phi_{\nu}[k] - \eta (f^* - f)$$

$$\frac{\partial C_e(P_e^{ESS})}{\partial P_e^{ESS}} = 2\alpha_e^{ESS} \left(P_e^{ESS} + 3P_{e,\max}^{ESS} \cdot (DOD)\right) + \beta_e^{ESS}$$

• $P_e: Electrical Power$

- P_{e,max} : Max. Power
- α, β, γ : battery coeficient
- *DOD* : Depth of discharge

KER 13

HIL-based Test Environment

KERI | 14

Agent	а _l (\$/кW2H)	β _i (\$/kWh)	γ _i (\$/kWh)
ESS ₁	0.001562	3.95	213
ESS ₂	0.00174	3.99	234
ESS ₃	0.00186	4.02	246
ESS ₄	0.00196	4.05	270
ESS_5	0.00208	4.09	283

Symbol	PARAMETER	Value
Τ _s	Sampling time	50 µs
T _{com}	Communication time	0.1 s
T _{EMS}	EMS command time	30 s
k _{sp} ,k _{si}	PI gains of secondary controller	0.01,6

Centralized vs distributed control

중앙집중식 제어방법과 유사한 SCO 패턴을 보임

운영비용의 경우 중앙집중식 대비 약 90% 성능을 보임

KERI | 15

Control Scheme	Total Generation Cost	
Centralized EMS	\$ 766.8190	
Proposed method	\$ 808.5974	
Difference	5.1668%	

<ESS SOC>

Pilot Plant (2)

Monitoring System

KERI | 18

Black Start Test

KERI | 19

Experimental Scenario

✤ Case 0

- With/without virtual impedance
- Case 1 (single GFM inverter and the others GFL inverters)

Line 3

ESS

#5

ESS

#2

ESS

#3

ESS

#6

V

#4

Load

#3

Load

Line 4

Line 4

- Load reduction & increase
- Single GFM tripping
- Case 2 (multiple GFM inverters with virtual inertia)

ESS #1

Line 3

Load reduction & increase

Line 2

PV

#1

Single GFM tripping

Load

#1

Line 1

Line 2

ESS #4

#5

#6

#2

#1

Test Results – Single GFM & Multiple GFL

20000 Case1(Scenario) A 15000 10000 DG1 DG2 DG3 \ominus Load change DG4 DG5 Active 5000 DG6 ⊜ GFM inverter tripping 80 90 100 110 120 70 130 140 time(s) 5000 15000 ⊖ Load change \mathbf{x} Active Power (W) Load 10000 increase GFM inverter operates first during load change 5000 Active] Load -5000 because of the fast responsiveness of the GFM reduction -10000 80 82 105 110 115 78 84 86 88 90 inverter time(s) time(s) 60.2 **⊖ GFM** inverter Tripping If single GFM trips, the entire system Line 1 Line 2 Line 3 Line 4 is blacked out 59.6 ESS ESS ESS Load 120 Load 130 140 70 100 110 #1 #2 #3 #1 #3 time(s) 60.1 60.1 60.1 (Hz) 60 requency (Hz) df dt Line 2 Line 3 Line 4 60 df С С 59.9 ESS ESS ESS ΡV Load #4 #1 #5 #6 #2 59.8 59.8

78

80

82

84

time(s)

86

88

90

KERI 21

115

110

time(s)

120

105

Test Results – Multiple GFM Inverter

✤ Case2(Scenario)

 \ominus Load change

Load change

 The frequency is controlled stably, because all GFM inverters operate at similar response time during load change,

Test Results – Multiple GFM Inverter

- GFM inverter-based DG trip
 - Scenario : The load amount is the same and DG is tripped sequentially
 - The frequency and voltage can be maintained even if some DG trips because voltage is generated form multiple voltage sources.

Test Results – Distributed operation function Incremental cost DG1< DG2< DG3< DG4< DG6< DG5

No.	А _I (\$/КW2H)	β _i (\$/kWh)
DG ₁	0.001562	3.82
DG ₂	0.00174	3.99
DG ₃	0.00186	4.15
DG ₄	0.00196	4.53
DG ₅	0.00208	5.09
DG ₆	0.00219	3.11

- \ominus Section: only primary controller operates
- Section: Secondary controller ON
- Active power output change according to the incremental cost of each IBR

Conclusion

Distributed Power System Research Center Thank you