

Blender[®]

STR/T/ RESILIENCE

Introduction for Several Types of Microgrid System and Digital Energy Platform

©Mitsubishi Electric Corporation @Smarter Grid Solutions

GX80-0000-T23-025

MELCO Provides the Digital Solution for Energy System

- Distributed Energy Resources (DER) are expected to play the most important role for electricity supply system towards the carbon neutrality around the world.
- Mitsubishi Electric Corp.(MELCO) has the long history to provide the Digital Solution for Electric Power Industry, in which "BLEnDer®" is a given name for the Solution

©Mitsubishi Electric Corporation ©Smarter Grid Solutions

ACHIEVEMENTS & RESULTS

- 500 MW Clean Energy Asset Capacity managed
- 5300m Grid Upgrade Investments Avoided
- > 1 TWh Annual Energy Produced by managed DER
- → 30 Operational DERMS systems (UK/US/Other)
- **300 ktCO2e Annual Emissions Avoided by managed DER**

PRODUCTS

STR/T/ GRID

Grid DERMS for Distribution Utilities to manage technical issues created by DER and avoid expensive, slow and environmentally impactful grid upgrades

Cirrus FLEX

VPP DERMS for DER Fleet Owners, Battery OEMs, local authorities and C&I customers to monetize flexibility from their assets in energy markets.

STRATA RESILIENCE

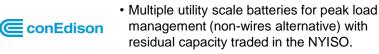
Microgrid DERMS for Distribution Utilities, developers, communities and local authorities to provide energy and power security.

ELEMENT GRID ELEMENT FLEX

Edge DERMS for local connectivity and to provide grid edge optimization and control capability linked to Fleet / Utility / Microgrid DERMS

REFERENCE PROJECTS

STR/T/ GRID



- Multi-use case DERMS platform for DSO business model implementation.
- "among the most advanced in the world" (Wood MacKenzie).

- Flexible Interconnection for inverter-tied grid edge resources creating additional grid hosting capacity.
- Additional use cases including Non-Wires endurant Alternatives, Voltage Management and Power Quality.

- Cirrus FLEX
- Battery energy storage wholesale, ancillary and balancing market dispatch and trading.
- Battery vendor, optimizer agnostic multisite, large scale solution.

• Cyber secure control room interface from the cloud.

QHydro Québec

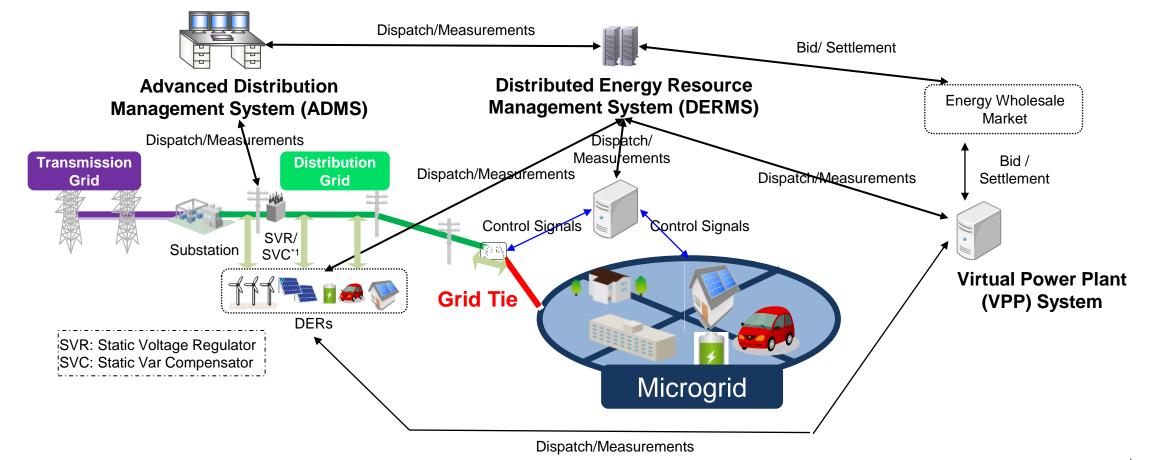
NORTHERN POWERGRID.

STR/T/ RESILIENCE

- Renewable-resource powered microgrid for an entire township integrated with utility system and operations.
- Wide applicability of controls, energy management and supporting DER analytics.
- Local resilient zones for remote, poorlyserved communities.
- Control of back-to-back power electronics bridge with battery storage and 'socket' for other DER.

©Mitsubishi Electric Corporation ©Smarter Grid Solutions **Australian**

Battery


Developer

According to DoE

3

"<u>A group of interconnected loads and distributed energy resources (DERs)</u> within clearly defined electrical boundaries that <u>acts as a single controllable entity with respect to the grid</u>"

©Mitsubishi Electric Corporation ©Smarter Grid Solutions

According to one of the conferences, the objectives of a "Microgrid" are

- (1) **Resiliency, Reliability** : maintain grid in case of an outage events in the grid
- (2) **De-carbonization** : reduce the emission of CO2 with the introduction of DERs as main energy sources
- (3) **Economics** : not only cost reduction such as decreasing peak demand or energy efficiency

but also earning proactively such as demand response or providing grid services

"Employing Data to Achieve Microgrid Goals", PowerSecure, Microgrid Knowledge Conference, 2023 https://www.microgridknowledge.com/microgrid-operations-and-optimization/article/33004570/want-to-learn-about-microgrids-check-out-the-presentations-from-microgrid-2023

According to DoE, the system requirements of a "Microgrid" are

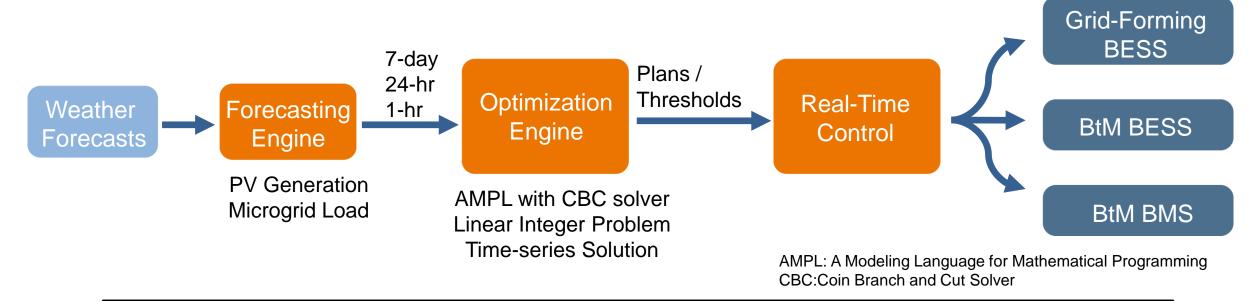
- (1) **Modularity** : standardize the components will simplify the design process, reduce special operation, etc
- (2) **Flexibility** : control renewables at the microgrid level will reduce uncurtains which leads to stability of the grid behavior.
- (3) **Resilience** : minimizing the loss of load during critical infrastructure failure which are vital for the life and safety of a communities.
- (4) **Transactive Energy Management** : optimize the allocation of resources by coordinating a multi-power system while considering prioritization, interests, and autonomy

Topic 3: Building Blocks for Microgrids

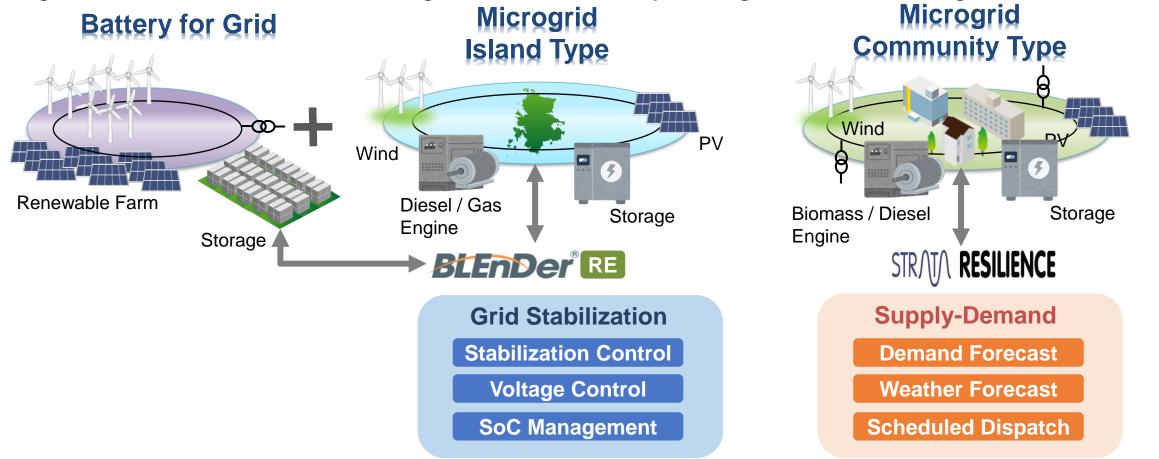
https://www.energy.gov/sites/default/files/2022-09/3-Building%20Blocks%20for%20Microgrids.pdf

Microgrid - Usecase : Grid Connected

	Switch Close	Microgrid
T/D	System Grid	PCC: Point of Common Coupling
Mode	Goals	Actions
Peak Shaving	Reduce cost of energy drawn from grid	All BESS charge & dischargeBMS non-invasive curtailment
	Reduce energy consumption during system-wide peaks	
Grid Events	Manage voltage in case of renewable penetration with low consumption	 All BESS charge & discharge BMS moderate curtailment
	Manage frequency in case of rapid changes in the weather	

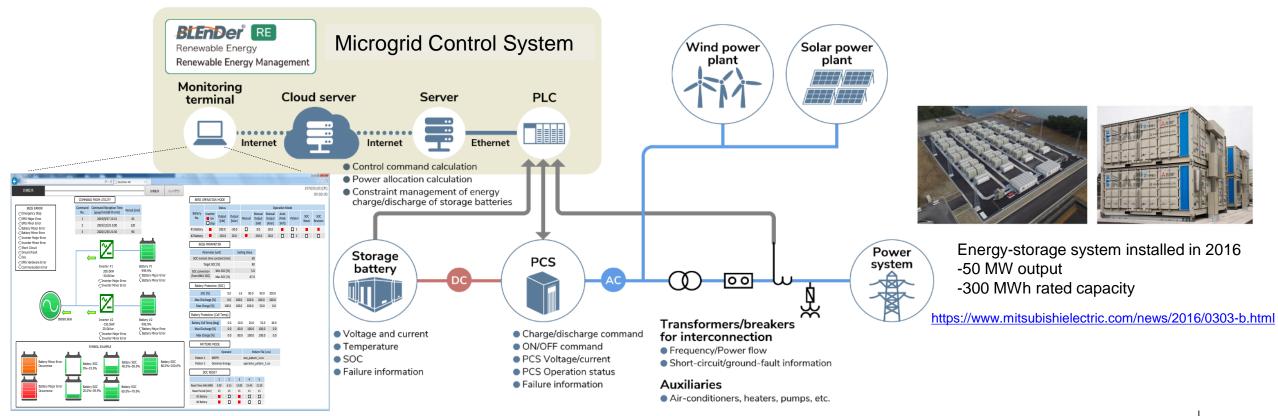

Microgrid - Usecase : Islanding / Islanded

	T/D System Grid	Switch Open Microgrid PCC: Point of Common Coupling
Mode	Goals	Actions
Planned / Unplanned Islanding	Coordinated transition	 Initiate Island / Loss of Supply Manage flows at PCC / Initiate black start* Islanding sequence / Black start sequence
Islanded	Maximize uptime Minimize cost of diesel generation (if relevant)	 FtM BESS form grid BtM BESS reduce demand, store excess PV BMS moderate / aggressive


- Uses available resources to reduce local microgrid peak load
 - Objective: Reduce peak daily microgrid load to reduce energy costs
 - DER Types: Grid-forming BESS, BtM BESS, BtM Building Management Systems

DER optimization benefits both from the input of **forecasts** as well as from **real-time conditions**, such that controls can be issued with **full situational awareness**.

- MELCO and SGS has developed an Energy Management Solution for the local requirements, respectively.
- Each has the capabilities to control and manages storage system and conventional generators to reinforce the grid with flexibility using PV and wind generation.


©Mitsubishi Electric Corporation ©Smarter Grid Solutions

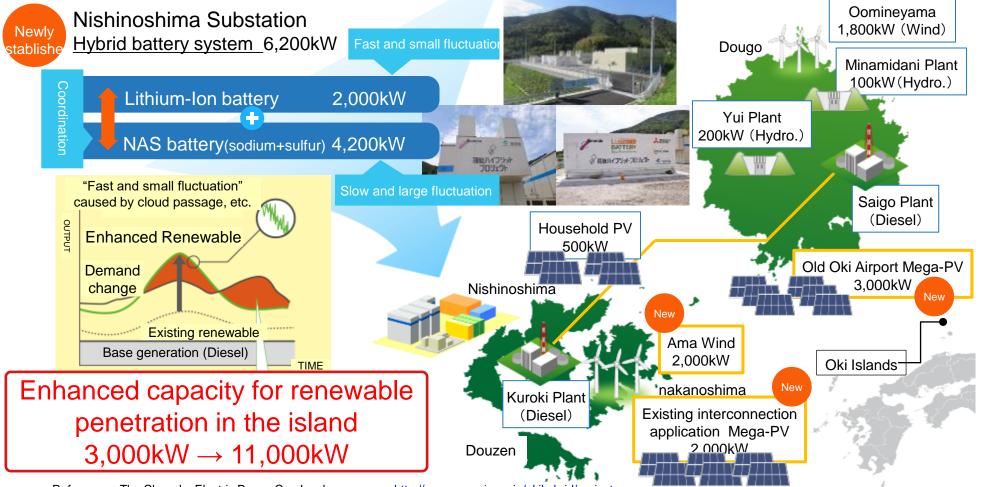
BLENDer[®] RE

BLEnDer®RE ~ Solution for microgrid ~

- Installation of Distributed Energy Resource (DERs) are in progress for the low-carbon and sustainable society.
- However, large-scale introduction of DERs involves various challenges such as its unstable and intermittent output due to weather conditions.
- To these challenges, MELCO has provided the solutions as <u>BLEnDer[®] RE</u>, which monitors and controls <u>DERs</u> and <u>storage batteries</u>. We offer BLEnDer[®] RE with the best combination of battery and PCS.
- BLEnDer® RE can support to operate microgrid by controlling batteries, DERs, or internal combustion generators.

©Mitsubishi Electric Corporation ©Smarter Grid Solutions

BLEnDer[®] RE can configure "Optimal dispatching control" and "ΔF control / ΔP control" as cascade control considering each equipment characteristics to realize both of economic efficiency and power quality.


				1	Load Weather		
se			Calculation	Calculation	forecast forecast		
Purpose	Control	Contents	Cycle	target time	Long-period optimal dispatching control (30m cycle)		
ency	Long-period optimal dispatching control	To schedule start-stop and output of generators and charging and discharging of batteries based on daily demand and renewable energy forecast w/ limiting condition of securing adjustment capacity.	30min. 3min.	1day (30min. steps) 2hours (3min. steps)	The number of operating generators		
c efficiency					Middle-period optimal dispatching control (3m cycle)		
Economic	Middle-period optimal dispatching control	To reallocate and control outputs of generators and batteries based on the error between actual and planned/forecast value to outputs of each equipment within limits to be most economic.			Dispatch outputs		
й со					(Short-period) ΔF control Frequency		
Quality	(Short-period) ΔF control)	To switch the output from batteries to generators for frequency stabilization.	1sec.	-	(Short-period) <u>△P control</u> Local information		
, Ql					Control signal signal		
Power	(Short-Period) ΔP control	To keep the frequency constant by battery high- speed control based on local information.	0.1sec.	-	Conventional Generator Batteries		

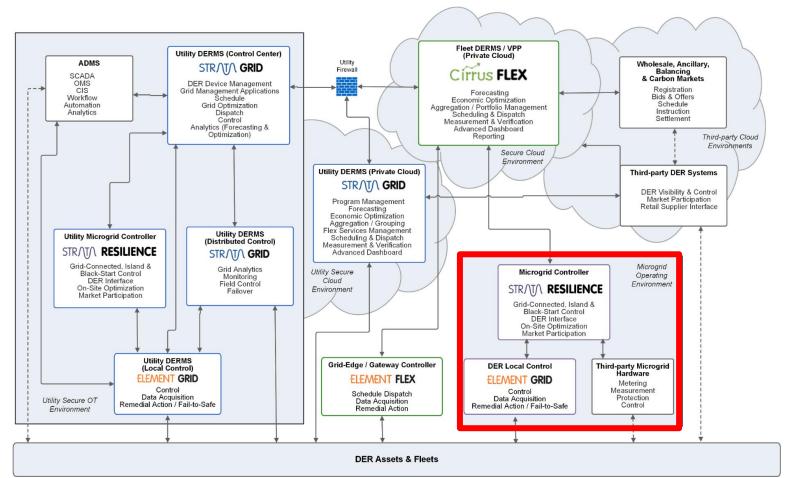
BLENDer[®] RE

Achievement

 Realized a high-output and high-capacity <u>hybrid battery storage system</u> by controlling different types of batteries

Reference : The Chugoku Electric Power Co., Inc. home page <u>http://www.energia.co.jp/okihybrid/project</u>

DERMS are an integrated suite of sub-systems and components.


<u>**Grid DERMS:**</u> On premise Utility DERMS integrated with ADMS focused on grid management use cases and resolving issues with model only control.

Aggregator DERMS: Private cloud features to manage fleets of assets directly (own assets) or via aggregators (BYOD). Secure bridge from Utility to external third parties

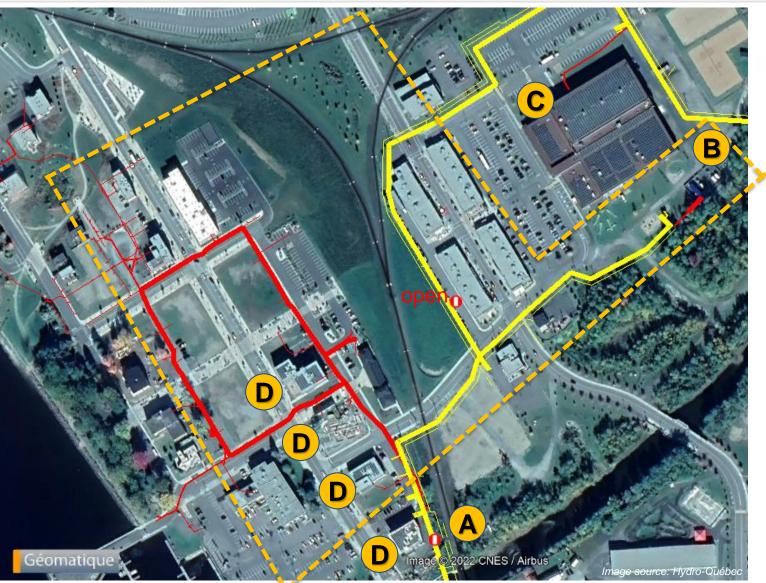
VPP DERMS: Private or Multi-Tenant Public Cloud implementation for owners, operators and aggregators offering 'flexibility' to utilities and markets

<u>Microgrid:</u> Substation local controller as part of federated Utility DERMS. Dedicated site / customer microgrid accessing markets via aggregator / VPP.

<u>**Grid Edge:**</u> Fail safe functions and standardising connectivity (MicroRTU or IoT gateway).

Lac-Mégantic & Hydro Québec Microgrid - Satellite Overview

Microgrid perimeter 30 buildings

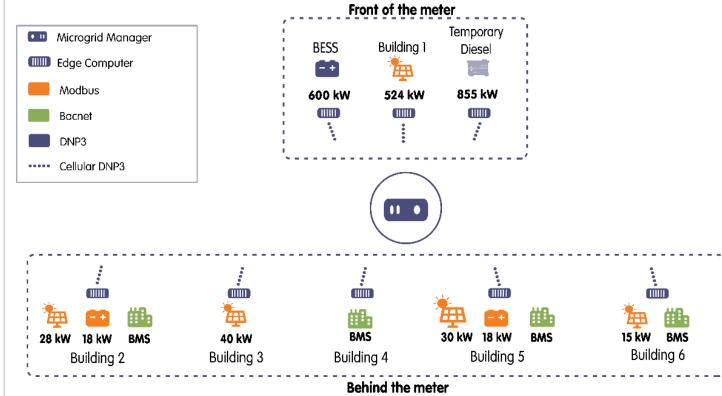


13

Microgrid PoC

- Microgrid Substation
- Rooftop PV
- D BTM Buildings
 - 25 kV Overhead
- 25 kV Underground

Lac-Mégantic & Hydro-Québec Microgrid Simplified Microgrid Architecture


Microgrid Manager/Controller:

- Delivered via Strata Resilience solution
- Coordinating authority between grid measurements and DER control commands

Edge Computers:

14

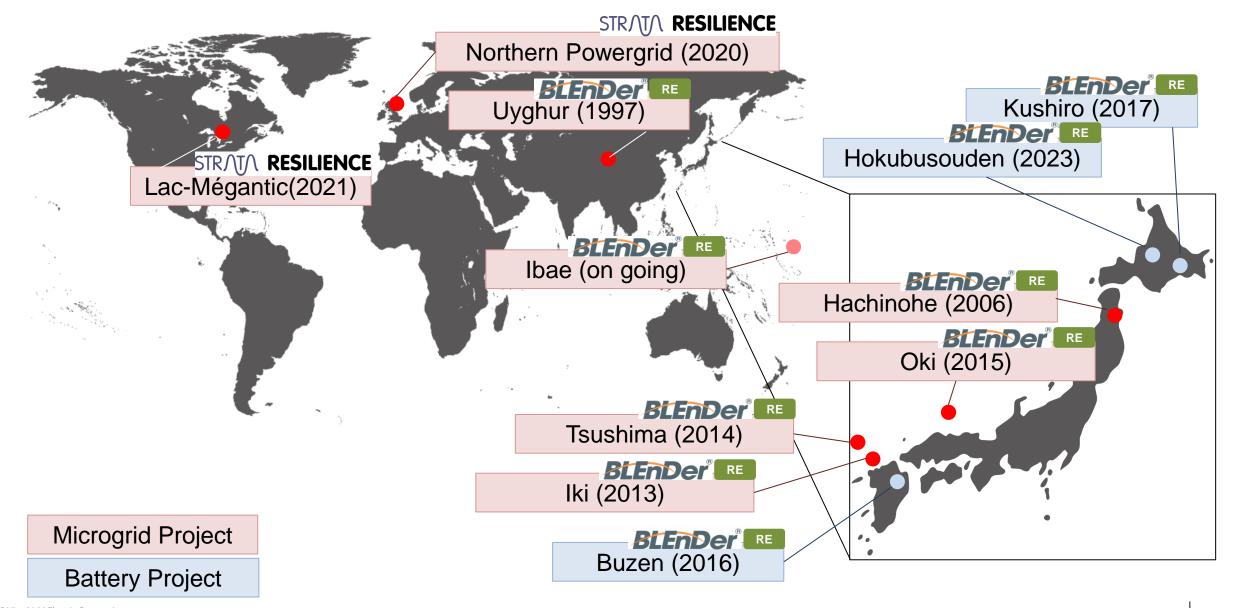
- Delivered via Element Grid solution
- Unifying control interface between Microgrid Controller and diverse DER types with layer of localized control capabilities

©Mitsubishi Electric Corporation ©Smarter Grid Solutions

STR/T/ RESILIENCE

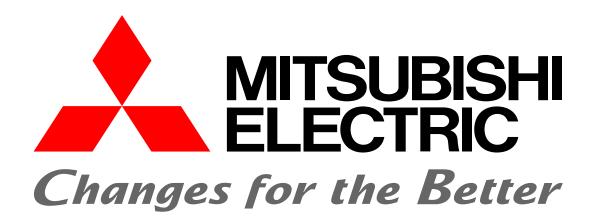
Lac-Mégantic & Hydro-Québec Microgrid DER functionality

DER	Grid Connected	Islanded
FtM BESS	Direct P/Q	Grid forming
All PV	Un-curtailed Power Factor*	Direct P (if necessary) Power Factor*
BtM BESS	Direct P	Direct P
BtM Buildings	Curtailment levels (non-invasive)	Curtailment levels (invasive)


- 1. DER capabilities change when islanded
- 2. DER capabilities are key inputs into control & optimization strategies

- Island management modes enabled since Autumn/Fall 2021
 - 8 successful islanding and re-synchronization sequences
 - Islanded delivery of power to loads of up to 600 kW
- Hydro-Quebec has responded to more than 25 demand response (GDP) events since 2021
- Optimization modes enabled since Autumn/Fall 2022

Reference Projects


©Mitsubishi Electric Corporation ©Smarter Grid Solutions

 Microgrids can provide localized low carbon energy with resilience while also providing energy and price security

Takeaways

- Mitsubishi Electric Corp.(MELCO) and Smarter Grid Solutions(SGS) offer major challenges seen in the microgrid to meet its local requirement.
- Island Type Microgrid
 - Controlling conventional generators by operating in rated outputs which are the most efficient and economical.
 - > Hybrid storage systems contribute with flexible grid operation.
- Community Type Microgrid
 - Managing island transitions must incorporate local network operational realities and new ways of working.
 - > Community engagement is critical for overall success.

Yukitoki Tsukamoto Senior General Manager Digital Energy Systems Center for Excellence E-Mail: <u>Tsukamoto.Yukitoki@ce.MitsubishiElectric.co.jp</u>

https://www.mitsubishielectric.com/eig/energysystems/ictpowersystem/aboutus/outline.html https://www.smartergridsolutions.com/