KU LEUVEN

Agrivoltaics: part of the local energy community

Prof. Jan Cappelle (KU Leuven campus Ghent & EnergyVille)

Adaptation of agriculture to climate change

Protection of crops against extreme weather

Belgian frites fry in the heat

Smaller potato yields due to drought could take a toll on country's signature snack.

- Summer storms are becoming more frequent, causing among other issues, hail damage.
- In 2018 drought caused a 37% decrease in potato yield
- Only a few excessively hot days can cause permanent damage to fruit

Competition between agriculture and energy?

Reference yield

2.050€/ha/y (peas) | 36.000€/ha/y (Rhubarb) 100% PV

<1MWp/ha => 900MWh/ha/y

90.000€/ha/y (market price) | 360.000€/ha/y (household)

Land efficiency = 100%

Combining energy and food production

- Plant growth is strongly related to daily available light
- At high irradation levels the impact of extra light on growth reduces.
- Too much light may lead to sunburn of plants

Use the excess light to produce energy

Combining energy and food production

Crop yield 80%

PV yield 80%

Land efficiency = 160%

Combining energy and food production

In the Belgian climate

 \Rightarrow little excess light

 \Rightarrow a reduction in light will most probably lead to loss in crop yield

Carefully looking for synergies:

- certain crops can better cope with shadow
- Other crops experience benefits (e.g. lettuce looking for more light may lead to bigger leaves)

Practical agrivoltaics metrics

Land equivalent ratio

Land Productivity Factor

$$LER = \frac{Y_{agri,AV}}{Y_{agri,ref}} * (1 - LL) + \frac{Y_{el,AV}}{Y_{el,ref}}$$

$$LPF = \frac{G_{\text{rel}}}{100} + \frac{Y_{el,AV}}{Y_{el,ref}}$$

KU Leuven: field trials

 First experiment: master thesis (Ministry of Solar)

- Flemish project
 - Bierbeek (pear)
 - Grembergen (sugarbeet)

- Horizon Europe:
 - Lovenjoel (field crops)

Bierbeek test field with pears

Hailnet protection system with wooden understructure

Bierbeek electricity consumption

Calculations based on standard NBN EN 1991-1-4

PV canopy design

balancing between energy, light (distribution) and investment

PV canopy design

balancing between energy, light (distribution) and investment

PV Capacity [kW	Vp/ha]	0	1200	600	720
Energy [MV	Vh/ha/y]	0	1350	680	821
LCOE [€/N	lWh]	0	75	100	130
Grel flowering [9	%]	100	55	77	72
Grel growing [9	%]	100	51	75	72
LPF		1	1,5	1,27	1,32

PV module design

Diffuse backsheet (-10% PAR)

Resulting in a homogeneous bundle of light

PV yield: production profile

South side produces more power

- But the 25° N/S configuration spreads the production profile
- Which results in a self-consumption rate of 85%

Microclimate

Air temperature

- Advantageous for crop growth / frost protection
- Difference fades out at higher wind-speeds

PAR distributions

- Higher frequency of low PAR values
- Less chance of sunburn

Pear quality

Pear quality

Starch Ethylene 10.0 • • Plot . 0.010 7.5 ppm per g fruit, per h . . Agrivoltaics Ė ٠ • Controle 1 F7 Controle 2 ᆑ class^{2.} Controle 3 Fi •. :• Þ Controle 4 . . • . Þ Controle 5 0.005 • •. ... 2.5 0.0 0.000 Agrivoltaics Controle Agrivoltaics Controle

Grembergen test field sugarbeet

А

В

10m

Smart tracking

Back tracking to avoid shadow

<image>

Grembergen relative radiation distribution

Grembergen energy yield

Electricity production on 18/7/2022

Measured monthly electricity production in 2022

Grembergen beet yield

Grembergen beet quality

Results Grembergen sugar beets

	Vertical		Tracking	
Season	2021	2022	2021	2022
Power (kWp/ha)	450	450	450	450
Specific electricity yield (kWh/kWp)	835*	835	1245*	1245
Electricity yield (MWh/ha)	376	376	560	560
LCOE (€/MWh)	117	117	88	88
Land Loss (%)	11 %	11 %	11 %	11 %
Crop yield (% of control)	81 %	100 %	84 %	89 %
Crop quality (% of control)	99 %	91 %	99 %	91 %
LER (-)	1.00	1.18	1.17	1.22

* Not a full year of measurement data was available so data from 2022 is being used.

29

Transfarm test site wheat

Variable GCR

А

Transfarm relative radiation distribution

Grel=78%±2.9%

Transfarm wheat yield

Transfarm wheat quality

A 2022

Transfarm wheat quality

Transfarm wheat quality

Results Transfarm Wheat

	Elevated	
Season		
Power (kWp/ha)	645	645
Specific electricity yield (kWh/kWp)	1185**	1185**
Electricity yield (MWh/ha)	764	764
LCOE (€/MWh)	158	158
Land Loss (%)	8 %	8 %
Crop yield (% of control)	67 %	<u>54 %</u>
Crop quality (% of control)	<u>90</u> %	
LER (-)	1.20	1.08

** Simulated electricity yield using local weather and TMY data.

Questions?

