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« 10.5 million new EVs were delivered during 2022, an
increase of 55% compared to 2021.

e It is estimated that there is 14.3 million EVs sales in
2023, a growth of 36% over 2022.

Source: Electric vehicle world sales database. Fuel cell Electric Vehicle



Green Transition in Transportation in Denmark (((
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In Aalborg, the city bus system will be 100% electrified until the end of 2023.

Methonal truck

Supercap-powered bus Charging station

E-transportation toward 100% is pending! .



New Opportunities and Challenges ((‘
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Power Grid % The increasing penetration of Electric Transportation

/ % /\.Ln_l.wm / promotes the revolution of modern power system.
lar

7 Storage SO v' Carbon emission reduction

v High energy efficiency

Charging
infrastructure v Government support for tax breaks
The rapid development of Electric Transportation poses new
E'e"”"’seda” Electric bus Blectric truck technical challenges.

Electric Transportation « Challenges in security and stability of power grid

« Complicated load characteristics of Electric loads
{ (Power converter-interfaced loads)
— j 7 o - - . . .
m \\/@':&é/ 2 Electric fuleling station and charging infrastructures

ol » Electricity services for E-transportation

N ™

» Business model of E-transportation value chain

What are roles of Microgrids in future Green E-transportation?

https://skliotsc.um.edu.mo/power-and-transportation-nexus-transportation-electrification-and-autonomous-driving/
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Microgrid-based Solution for Green E-Transportation

« DC Microgrid-based Vehicle-to-Grid (V2G) solution
« DC Microgrid-based metro traction power system
« DC Microgrid-based hybrid metro traction power system
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DC Microgrid-based framework for Green E-Transportation

« DC Microgrid-based Vehicle-to-Grid (V2G) solution
« DC Microgrid-based metro traction power system
« DC Microgrid-based hybrid metro traction power system
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1. DC Microgrid-based V2G solution

A compact and mobile power bank based on DC microgrid
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DC microgrid-based V2G solution (Grid-connected/Islanded)
Hybrid energy storage system (HESS): adjust peak-to-valley difference and smooth power peak

Electricity service for E-transportation such as road assistance

Grid-connected operation

Electricity price-dependent power
management and economic benefits

Energy storage system control
Peak-to-valley power balance

Islanded operation

Mobile charging
Emergency resuce
Road assistance




[ The operation modes of SMPB ]
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Mode 3: Hybrid supplying mode

* PV is out of operation during the nighttime
* Power grid provides the power supply for EVs and ES under a low

electricity price
Mode 2: Independent operating mode
* The power of PV and the SOC of HESS is sufficient during the daytime

» The power of PV is insufficient and the SOC
of HESS is less than 20% during the daytime.

—
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[ Electricity Price-prioritized Droop Control Strategy J
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Electricity price is higher than
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The electricity price coefficient 4, is introduced into droop
coefficient m, to form the proposed droop control equation.
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[ Demonstration with the proposed solution ] ((‘
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Demo Project with the proposed solution Application in Parking Lot

11



«

AALBORG UNIVERSITY
DENMARK

[ DC microgrid-based V2G solution ]

DC Microgrid can contribute to green E-transportation system, which likes an “electric
spring”’ to bridge power grid and E-transportation.

Power Grid
nj Wlnd . .
/\L. - Grid-connected operation
e .

Slorage Solar Regulate peak-to-valley difference
* Improve security and reliability
» Electrity price-dependent energy business

X, Islanded operation

* Emergency resuce
»  Offline electricity service such as road
assistance

Electric truck . . . .
Electric bus e « Improvement of charging efficiency in

Elecln-:: sadan

parking lots



DC Microgrid-based framework for Green E-Transportation

« DC Microgrid-based Vehicle-to-Grid (V2G) solution
« DC Microgrid-based metro traction power system
« DC Microgrid-based hybrid metro traction power system
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[ Metro Traction Power Supply System ]

Metro transit system is an important public utility in metropolitan areas.

Traction substation 1 Traction substation 2 Traction substation 3
-1
Traction
transformer
......... 1
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The diagram of conventional metro traction power system
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The diagram of metro traction power system with regenerative braking appliacation.
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[ DC Microgrid-based Metro Power System ] ((‘
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Renewable Microgrids
])
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[Operation Mode ]
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Practical metro load profile

Grid-connected operation

* Mode 1 (Voltage control): Catenary voltage regulation for multiple
trains operation

* Mode 2 (Power control): : Power control to reduce energy
consumption from traction substation and enhance dependence of
metro system on power system.

«  Mode 3: Regenerative braking support mode (RB energy recycle)

Islanded Operation (Nighttime)

* Mode 4 : The stored RB energy is sold to obtain economic benefits.
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[ The Proposed Energy Management Strategy ]

<4mmm——

MER

— DAB converter-based MEC

Secondary H bridge

Primary H bridge

Down line

«

LBORG UNIVERSITY

9]

|

]
=/
E:"i

Physical layer

(O |

8
18 HH
gL e

Information layer

Catenary voltage

Train power

Y

MERC

RES power
DC bus voltage

The diagram of the proposed system
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[

Practical Measured data-based HIL Verification Result ]

«

Mode 1: Voltage Control ]
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» Catanary voltage is stabilized at 1500V.
* RES and ES are well balanced.
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[ Mode 2: Power Control ]
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Microgrid is flexibly operated to regulate output
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of failure of metro power supply. 18



DC Microgrid-based framework for Green E-Transportation

* DC Microgrid-based Vehicle-to-Grid (V2G) solution
« DC Microgrid-based metro traction power system
« DC Microgrid-based hybrid metro traction power system

DDDDDDD

19



[ 3. Electricity-Hydrogen-Integrated Metro Power System ] ((‘

AALBORG UNIVERSITY
DENMARK

Hydrogen *3 Eﬁ

subsystem ll;ﬁtorage H, Station Fuel CEQ Vehicle
B
Fuel cell PlEI‘;l \\l'ater /‘/‘i\/ &
Grid “uel ce electrolyzer O\ 1\ 3 )
Q \—jf !E\?‘ Wind Turbine

% MMER———= A A

Renewable Electricity \17 -
\ MTPS \ \ subsystem Q = @
——

N = Electric Storage
ErEr s

Integrated DC microgrid (Electricity/Hydrogen)

Port 2 Tracti:n_f_e_ state ﬁﬁgjgt_’fjg_g_l_qlte
Electricity subsystem L, x _: Portl |e Port2 Portl » Port2
g ] [rderfor {6 ‘ L
| i oY o
; o2t & L - L Mode 1 | POT8 i Mode 2 | POTE3
: ' P_?g ................................................... e e e
EE& Portl |-- Port2 i | Portl |e Port2
b Y [ L 4
P()rr.?{f'-
- —— - Port3 Port3
Port 3 Zs ou 1Zs i Water electrolyzer M{)dej' ____ . W0d£’4 ____________________________________
System modelling considering metro power system Operation mode

and integrated DC microgrid
20



[ Control Strategy ]
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[ Laboratory Setup and Verification Result ]
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Conclusion

[ DC microgrid-based traction power supply system ]

* Integrate renewable energies by DC microgrid to reduce carbon emission
* Reduce energy consumption

» Improve security and reliability of power supply

« Improve power supply capability and extend distance between substations
» Impedance-based stability is proposed to analyze stability issue.

 The demonstration and HIL verification shows that the microgrid-based
solution is a promising solution for E-transportation.

Microgrid technology will play a more and more important role in green E-transportation system.
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