DC Microgrid Technology toward Green E-Transportation

Yanbo Wang
Department of Energy Technology, Aalborg University
ywa@et.aau.dk

I Background

II New Opportunities and Challenges

III DC Microgrid-based framework for Green E-transportation

V Conclusion

Background

• It is estimated that there is 14.3 million EVs sales in 2023, a growth of 36% over 2022.

Battery Electric Vehicle

Hybrid Vehicle

Fuel cell Electric Vehicle

Green Transition in Transportation in Denmark

In Aalborg, the city bus system will be 100% electrified until the end of 2023.

Battery-powered bus

Electric ferry

Supercap-powered bus

Charging station

Methonal truck

New Opportunities and Challenges

Electric Transportation

The increasing penetration of *Electric Transportation* promotes the revolution of modern power system.

- ✓ Carbon emission reduction
- ✓ High energy efficiency
- ✓ Government support for tax breaks

The rapid development of *Electric Transportation* poses new technical challenges.

- Challenges in security and stability of power grid
- Complicated load characteristics of Electric loads (Power converter-interfaced loads)
- Electric fulling station and charging infrastructures
- Electricity services for E-transportation
- Business model of E-transportation value chain

What are roles of Microgrids in future Green E-transportation?

https://skliotsc.um.edu.mo/power-and-transportation-nexus-transportation-electrification-and-autonomous-driving/

Microgrid-based Solution for Green E-Transportation

- DC Microgrid-based Vehicle-to-Grid (V2G) solution
- DC Microgrid-based metro traction power system
- DC Microgrid-based hybrid metro traction power system

DC Microgrid-based framework for Green E-Transportation

- DC Microgrid-based Vehicle-to-Grid (V2G) solution
- DC Microgrid-based metro traction power system
- DC Microgrid-based hybrid metro traction power system

1. DC Microgrid-based V2G solution

A compact and mobile power bank based on DC microgrid

- DC microgrid-based V2G solution (Grid-connected/Islanded)
- Hybrid energy storage system (HESS): adjust peak-to-valley difference and smooth power peak
- Electricity service for E-transportation such as road assistance

Grid-connected operation

- Electricity price-dependent power management and economic benefits
- Energy storage system control
- Peak-to-valley power balance

Islanded operation

- Mobile charging
- Emergency resuce
- Road assistance

Mode 1: Grid supplying mode

- PV is out of operation during the nighttime
- Power grid provides the power supply for EVs and ES under a low electricity price

Mode 2: Independent operating mode

The power of PV and the SOC of HESS is sufficient during the daytime

Mode 3: Hybrid supplying mode

• The power of PV is insufficient and the SOC of HESS is less than 20% during the daytime.

Electricity Price-prioritized Droop Control Strategy

The V-P droop curve of the proposed power controller. (a) ESS: discharge mode. (b) ESS: charge mode.

$$V_{\rm ESS}^{\rm ref} = V_{\rm dc}^* - m_{\rm ESS} P_{\rm ESS}, m_{\rm ESS} = \frac{V_{\rm max} - V_{\rm min}}{P_{\rm ESS, max}}$$
$$V_{\rm g}^{\rm ref} = V_{\rm dc}^* - m_{\rm g} P_{\rm g}, m_{\rm g} = \frac{\lambda_{\rm e} (V_{\rm max} - V_{\rm min})}{P_{\rm g, max}}$$

Operation modes

The electricity price coefficient $\lambda_{\rm e}$ is introduced into droop coefficient $m_{\rm g}$ to form the proposed droop control equation.

Demonstration with the proposed solution

- ESS
- Multi-port design
- App terminal
- Blue tooth

Demo Project with the proposed solution

Application in Parking Lot

DC microgrid-based V2G solution

DC Microgrid can contribute to green E-transportation system, which likes an "electric spring" to bridge power grid and E-transportation.

Electric Transportation

Grid-connected operation

- Regulate peak-to-valley difference
- Improve security and reliability
- Electrity price-dependent energy business

Islanded operation

- Emergency resuce
- Offline electricity service such as road assistance
- Improvement of charging efficiency in parking lots

DC Microgrid-based framework for Green E-Transportation

- DC Microgrid-based Vehicle-to-Grid (V2G) solution
- DC Microgrid-based metro traction power system
- DC Microgrid-based hybrid metro traction power system

Metro Traction Power Supply System

Metro transit system is an important public utility in metropolitan areas.

The diagram of conventional metro traction power system

The diagram of metro traction power system with *regenerative braking appliacation*.

DC Microgrid-based Metro Power System

with single train

The microgrid is operated as a dynamic regulator.

- Integrate renewable energies
- Reduce energy consumption
- Improve security and reliability of power supply
- Improve power supply capability and extend distance between substations

The proposed microgrid-based metro power supply system

Practical load profile

Operation Mode

Practical metro load profile

Grid-connected operation

- **Mode 1 (Voltage control)**: Catenary voltage regulation for multiple trains operation
- **Mode 2 (Power control)**: Power control to reduce energy consumption from traction substation and enhance dependence of metro system on power system.
- Mode 3: Regenerative braking support mode (RB energy recycle)

Islanded Operation (Nighttime)

• **Mode 4 :** The stored RB energy is sold to obtain economic benefits.

The Proposed Energy Management Strategy

The diagram of the proposed system

Model of multiple power supply sections with microgrids

Power relationship

Practical Measured data-based HIL Verification Result

DENMARK

- Catanary voltage is stabilized at 1500V.
- RES and ES are well balanced.

Mode 2: Power Control

- Microgrid is flexibly operated to regulate output power for metro power supply.
- Microgrid independently supplies MTPS in presence of failure of metro power supply.

DC Microgrid-based framework for Green E-Transportation

- DC Microgrid-based Vehicle-to-Grid (V2G) solution
- DC Microgrid-based metro traction power system
- DC Microgrid-based hybrid metro traction power system

3. Electricity-Hydrogen-Integrated Metro Power System

Integrated DC microgrid (Electricity/Hydrogen)

System modelling considering metro power system and integrated DC microgrid

Operation mode

Control Strategy

Metro system and hydrogen production by electricity subsystem

Regenerative braking energy utilization

Renewable energy for hydrogen production

Power supply by hydrogen subsystem

Constant power characteristic

- 1) Oscillation phenomenon can be caused and propagated to different ports as increase of tractive power.
- 2) The reverse power flow at one port can mitigate the instability phenomenon at the rest of ports.

Impedance stability analysis at different terminals

Laboratory Setup and Verification Result

Electricity-hydrogen-integrated microgrid

Laboratory setup

Experimental verification

RSITY

Mode 1 when tractive power increases

Mode 2 and Mode 3

Conclusion

DC microgrid-based traction power supply system

- Integrate renewable energies by DC microgrid to reduce carbon emission
- Reduce energy consumption
- Improve security and reliability of power supply
- Improve power supply capability and extend distance between substations
- Impedance-based stability is proposed to analyze stability issue.
- The demonstration and HIL verification shows that the microgrid-based solution is a promising solution for E-transportation.

Microgrid technology will play a more and more important role in green E-transportation system.

Selected Publication

- [1] H. Yu, Y. Wang and Z. Chen, "A Novel Renewable Microgrid-Enabled Metro Traction Power System—Concepts, Framework, and Operation Strategy," *IEEE Trans. Transportation Electrification*, vol. 7, no. 3, pp. 1733-1749, Sept. 2021.
- [2] H. Yu, Y. Wang, H. Zhang and Z. Chen, "Impedance Modeling and Stability Analysis of Triple Active Bridge Converter-Based Renewable-Electricity-Hydrogen-Integrated Metro DC Traction Power System," *IEEE Trans. Industrial Electron.*, vol. 70, no. 12, pp. 12340-12353, Dec. 2023.
- [3] H. Yu, Y. Wang and Z. Chen, "A Renewable Electricity-Hydrogen-Integrated Hybrid DC Traction Power System," in *Proc. SPEC*, 2021, Rwanda.
- [4] H. Yu, Y. Wang and Z. Chen, "Impedance-based Stability Analysis of Metro Traction Power System Considering Regenerative Braking," in *Proc. ECCE Asia*, 2020, China.
- [5] H. Yu, Y. Wang and Z. Chen, "A Novel DC Microgrid-enabled Metro Traction Power System," in *Proc. PEDG*, 2020, Romania.
- [6] Y. Wan, Y. Wang and Z. Chen, Electricity price-prioritized droop control strategy of grid-friendly vehicle-to-grid integrated microgrid. 2023 IEEE PEDG.
- [7] Y. Wan, Y. Wang and Z. Chen, A novel grid-friendly vehicle-to-grid solution for power grid with large-scale renewable fuel vehicles. 2022 IEEE SPEC.
- [8] H. Zhang, Y. Wang, H. Yu and Z. Chen, A black start strategy based on multiport linterlinking converters for DC microgrids. 2022 IEEE SPEC.