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Synergic problems in terrestrial, naval and aircraft microgrids

Figure 3: An example TeDP system comprising synchronous ma-
chines connected through an AC-DC-AC converter
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Challenges and opportunities

*** Technical challenges: Design and control to enable stable
operation for wide ranges of input variations and topological
changes.

***Business challenges: Maximize DER deployment, while
minimizing load shed, and need for expensive fast storage.

*** Technical opportunities: Major innovation at value.

’:’ B USiness Oppor tuni ti @S. a)for utilities (high tech business of electricity services at value); b)

for vendors (massive development and deployment of smart hardware and system cyber software); c) for
electric energy users (choice at value).

X Societal oppor tunities: Clean, secure electricity service at choice and value.

llic, M. D. (2016). Toward a unified modeling and control for sustainable and resilient electric energy systems. Foundations and Trends® in Electric Energy Systems, 1(1-2), 1-141.



Outline

** Microgrids studied (Azores Islands, Puerto Rico; distribution feeders (Sheriff,
Banshee; large continental IEEE 8500 bus grid); TeDPs for hybrid aircrafts

= Scaled up in size; diverse resources (wind, PVs, CHPs, storage), loads (priority,
controlled, uncontrolled), grid topologies (stand-alone; reconfigurable with T&D)

** Lessons learned, Challenge problems

= Systems thinking key; need for transparent control co-design essential for meeting
any metrics desired; numerical evidence w/r to metrics dependence on control

*»* Rethinking the first principles: Unified modeling, design, control

= Modular, interactive modeling of components —I/O characterization
= Unified multi-layering of interactions for robustness and efficiency
** Three technology-agnostic principles to make it work

** New high tech business opportunities to innovate at value;
collaborations



Transmission Grid

o \
Mu|t|_|ayered Y 115 KV and above
\
interactive system S
LN
e i oz
DSO1 - = = = = - -————-
A A A
11 I
N S V4 b | ' | t
eams propiems Cor b
11 L e
N R B2
' - -
2
NODES1
Sub-Transmissio
Grid 38 KV -115 |
llic, Marija D., Rupamathi
Jaddivada, and Magnus g:f]k;‘p -
Korpas. "Interactive protocols i :
for distributed energy resource St i ¥ »
management systems . <= == =» Communication within NODES (Hierarchy 1) Appliance:fzﬁ' Resldential\[ Sv ﬁf )
(DERMS)." IET Generation, | iiehborhood o esidential
Transmission & Distribution 14’ <@ == =» Communication within a Distribution system (Hierarchy 2 == PV
no. 11 (2020): 2065-2081. <= = =) Communication within a balancing area (Hierarchy 3) I I I -
<= == =» Communication within an entire system (Hierarchy 4) I I



Flores Island Power System-Typical micro-grid of the future*®
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*Publicly available data, modeling and control in llic, M., Xie, L., & Liu, Q.
(Eds.). (2013). Engineering IT-enabled sustainable electricity services: the tale
of two low-cost green Azores Islands (Vol. 30). Springer Science & Business
Media.
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Complexity of emerging microgrids
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Limpaecher, E., R. Salcedo, E. Corbett, S. Manson, B. Nayak, and W. Allen. "Lessons learned from hardware-in-the-loop testing of microgrid control systems." In CIGRE
US National Committee 2017 Grid of the Future Symposium, 2017.

lli¢, Marija, Rupamathi Jaddivada, and Xia Miao. "Modeling and analysis methods for assessing stability of microgrids." IFAC-PapersOnLine 50.1 (2017): 5448-5455.



Real world feeder — Banshee distribution system

Sample Load Profile
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Effect of new tech

Sample Load Profile
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Sample Load Profile
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Existing and emerging challenges/needs
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llic, M., Joo, J. Y., Carvalho, P. M., Ferreira, L. A., & Almeida, B. (2013, August).
Dynamic monitoring and decision systems (DYMONDS) framework for
reliable and efficient congestion management in smart distribution grids.

In 2013 IREP Symposium Bulk Power System Dynamics and Control-IX MANAG | N G CO M P |_EX|TY‘P SCAL' N G U P‘P I I I - I-
0

Optimization, Security and Control of the Emerging Power Grid (pp. 1-9). IEEE.
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Power Composition profile of loads in the test system
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// Nominal peak load = 10773.2 +j2700.0 kVA Hour of the day

// Houses: 1977 from 500.0 to 3500.0 sf, total area 3941782 sf
/I Electric water heaters: 1013 totaling 4574.7 kW

/[ Air conditioners: 1977 totaling 26150.6 kW

/] Solar: 1777 totaling 6755.2 kW

// Storage: 857 totaling 4285.0 kW

/I Water heater load is resistive

/[ HVAC load ZIP=0.2,0.0,0.8 with variable power factor as input
/I (the fan load ZIP=0.2534,0.7332,0.0135 and pf=0.96)

/ Non-responsive ZIP load is input all constant current, pf=0.95



Overall technical challenge

‘*Need systematic tools to assess operating problems

--when and why the grid may not work—could trigger
protection and cascading failures (power cannot be delivered
within given constraints; conditions sensitive/unstable w/r to
input disturbances and model uncertainties)

**Must design control to manage technical problems

= enhanced hierarchical control; fail/safe distributed coordination;
protocols for coordination

" primary control capable of meeting specifications
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*Publicly available data, modeling and control in llic, M., Xie, L., & Liu, Q.
(Eds.). (2013). Engineering IT-enabled sustainable electricity services: the tale
of two low-cost green Azores Islands (Vol. 30). Springer Science & Business

Media.

Flores Island Power System-Typical micro-grid of the future*®
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Effects of microgrid controller (AC OPF-based)

Stable Case:

Unstable Case:
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Fig. 12.6 Voltage profile of the island in three different scenarios

Fig. 13.2 Geographical distribution of load in Flores; the x-axis is the bus number 1-46 the y-axis

is load in per unit (pu)
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Potential to add PVs and support them with EVs
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Major concern: Frequency regulation?
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How to make it robust/small-signal stable?
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Eigenvalues Table 15.4 Eigenvalues of the dynamic components Tima(sac) Time(sac)

0.03+32.73i, —126.71, —0.65+9.83.
—0.1742.86i,—0.03, —1.39, —0.46

0.07+32.731,—126.71, —0.67+9.83,
—0.18+2.87i,—0.03,—1.39, —0.46 Hydro

Interconnected Flores system
without local flywheel
Interconnected Flores system

with local flywheel

Generator components Eigenvalues of the components
Diesel —0.03, -0.8238 £ 9.8670:

0,—126.7109,—1.3742, —0.0330, —0.4606

Fig. 15.11 Output of diesel and flywheel in response to frequency deviations, Case 2: system with
negative load wind generator. (a) Output of diesel generator. (h) Output of flywheel




Transient stabilization in systems with wind power =SVC

Potential of Nonlinear Fast
Power-Electronically-Switched Storage
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Fig. 19.2 Wind disturbances simulated in the Flores e:
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Fig. 19.14 (a) Voltage on the buses and (b) the electric power output of the generators if the
system is controlled by the proposed energy-based controller
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system controlled by different controllers



Transient stabilization using flywheels
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Fig. 19.34 Full diagram connecting the flywheel to Flores
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Fig. 19.35 Frequency of (a) the hydro, diesel, and wind generators, and (b) the flywheel. in the
Flores system

Concept of Sliding Mode Control Applied to a Flywheel
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The key role of grid reconfiguration to use DERs for reliable and resilient service
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Fig. 18.1 The distribution system on the island of Flores

Toward Reconfigurable Smart Distribution
Systems for Differentiated Reliability of Service
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Fig. 18.4 The locations to install NCSs and NOSs

Table 18.1 Comparison of total costs between the original and modified system

Original system Modified system

No. of installed switches 0 20

Switch cost 0 20x85,000 = $100,000

Total interruption cost 567,709/vear = 10 year = $677,090 $16,585/year = 10 year = §165,850
Total cost £677,090 $265,850
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Four TEM cases

» TEM 1 (sunny day, fixed tariff) — a baseline case, a combination of plug-loads
and solar PVs during normal condition. PVs are negative loads.

» TEM 2 (stormy day, fixed tariff)---The same plug-load with sudden dip in
solar.

» TEM 3 (TOU pricing)-- Given time-of-use (TOU) price, DERs responsive pro-
active decision makers about power consumed with the objective of
minimizing their energy bills.

» TEM 4 (dynamic pricing)- DERs and their aggregators create bids in
anticipation of electricity prices, and, at the same time, they affect them
(price makers).

= TEM 4.1 (Unlimited utility generation)

= TEM 4.2. (Constrained Utility generation)

Holmberg, David, Martin Burns, Steven Bushby, Tom McDermott, Yingying Tang, Qiuhua Huang, Annabelle Pratt et al. "NIST Transactive
Energy Modeling and Simulation Challenge Phase Il Final Report." NIST special publication (2019).



MIT demonstration of TEM using SEPSS*
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* Based on DyMonDS framework—agents with embedded

* Third party software (NETSSWorks) integrated to exploit

decision making interacting through well-defined
binding information exchange

* A scalable platform aligning embedded spatial and
temporal hierarchies with the computer architecture

its voltage optimization capability in its OPF problem

* SGRS scheduler utilized to initiate the simulation,
eliminating the need for having a co-simulation master
program

*Holmberg, David, Martin Burns, Steven Bushby, Tom McDermott, Yingying Tang, Qiuhua Huang, Annabelle Pratt et al. "NIST Transactive
EnergyModeling and Simulation Challenge Phase Il Final Report." NIST special publication (2019).



Comparison of pricing and effect of utility generation cost

Possible tariff structure for each
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Impact of TEM on utility—technical and economic metrics
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OBSERVATIONS —utility COULD PLAY A MAJOR ENABLING ROLE; BASIS FOR PEAK
LOAD PRICING AND PERFORMANCE BASED REGULATION

NEED FOR ASSESSING AND IMPROVING HOSTING CAPACITY AT VALUE



Performance with/wo economic signals

Energy dispatch of a group of 10 DERs Reserve Capacity Dispatch of a group of 10 DERs
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More granular decision making at prosumer level results in possibly larger
reserve capacity dispatch and more flexibility in energy adjustment schedules
of DERs



Technical, business and societal challenges and opportunities

5.3.7. Roles and performance metrics of different TEM participants
Shown in Table MIT-1 1s an illustration of roles and performance metrics of TEM participants
tor the four TEC cases.

Case

1. normal
sunmny
day

2. Storm
in the
middle of
Case 1

3. Time-
of-Use

4.
dynamic
electnicity
pricing

Table MIT-1 Roles and Performance metrics in TEC cases
Distribution Grid

End-users
Role @ Sub-Objective
Passive | utilize solar
power

have power
during both
normal
conditions and
during storm
energy ball;
maximize local
efficiency;

Passive

decide
on

power
to use

ensure comfort;

support voltage
or not.

energy ball;
maximize local
efficiency;

decide

bidding

ensure comfort;

support voltage
of not.

Role
Critical,
mcluding
possible reverse
flows
Fole of
distribution
grid--critical

less critical; end
users could
support their
voltage;
participate in
delivery

less critical; end
users could
support their
voltage;
participate in
delivery; MUST
GIVE SIGNAL
TO MARKET

Sub-Objective
feasible power
delivery; ANSI
4.1

Sub-objective —
feasible power
delivery; ANSI
4.1

feasible,
physically

efficient delivery;

if supporting
voltage. build
smart
infrastructure
feasible,
physically
efficient delivery
AT VALUE; if
supporting
voltage, build
smart infra-
structure; GET
PATD FOR THIS

Market
Role Sub- Objective
minimal Economic
efficiency
minimal Economic
efficiency
minimal Economic
efficiency
Critical; Efficient
create market clearing
dynamic mechanism by
prices which | considening
reflect not | bids at value
only real from both end
power but | users and gnid
also
VOLTAGE

Notes

Operating
problems time-
varying.
Baseline case.
Potential
problems
during storm

Could be
conflicting
sub-objectives;
Need for
voltage support
protocol

Potentially
win-win fair
case



System enhancements needed—hidden traps

A (microgrid controller): should have adaptive performance metrics
and optimize over all controllable equipment (not the case today)

“*B (secondary control-droops): modeling often hard to justify
(droops only valid under certain conditions)

**C (primary control): A combination of primary and secondary
control should guarantee that commands given by microgrid
controller are implementable (stable and feasible). Huge issue—
hard to control power/rate of change of power while maintaining
voltage within the operating limits!

¢ Note: Control co-design key to improved performance UHs



Coordinating increased penetration ot

renewables and demand response
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Typical feeder and its inputs

Slow variations of Net inflexible demand
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Emerging system; needs for enhancing SCADA
***Multi-layered operations/ownerships

‘*Need to integrate renewables; DERs; demand side

“*No end-to-end communications for cooperative electricity
service

= Bulk power system (BPS) with SCADA; the rest has no information exchange for
proactive participation

**Need minimal, carefully desighed communication platform
that builds on the existing BPS SCADA



General DyMonDS
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Temporal Decomposition of inflexible demand for
market operations

2700
.

Py e e e e e == === - |
A ‘ 2830 ‘ . . —
3050 - —— e . . . o ’f | == Secondary layer control set points |
= Dispatch signals from tertiary level ” | 2820 - — = Required primary layer control capability - ] I
— == Required capability of secondar layer control ’¢’ = Actual load demand |
3000 - =——— Actual load demand PRl I 2810 |
|
2800 -
I I |
2950
IS 2790} |
= |§ |
o ©
E . 7
& | Market timestalé l
== b Q
3 I 2760 - |
o
I
I I 2750
2800 I |
I 2?40: |
2750 F I 5730- |
[ |
2720
| 1T |
d |

Time (scale of tertiary layercontrol) == == == = e oem e e e e e e Em e e e e e e e

TAKE-AWAY 1: MUST UNDERSTAND/MANAGE DYNAMICS OVER SEVERAL TIME HORIZONS..
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Systems, 1(1-2), pp.1-141.



Hiearchical control in microgrids
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Question 1: Resilient and reliable scheduling

From voltage constrained decision making (DCOPF + AC power flow) to cou

\

**Given an existing system, how to operate
new power plants without experiencing
power delivery problems.

**Given an existing system, how much new,
renewable, generation to build and at which
locations.

“**Assess the effect of different pricing rules for
integrating renewable resources on long- and
short-term economic efficiency and the

pled AC Optimal Power Flow

ACOPF is the key
software for co-
optimizing power
___ generation and
voltage setting

Why is DCOPF insufficient?
With increased renewable
penetration, it no longer is
possible to dispatch real
power with DCOPF well
enough without optimizing

ability to recover capital investment cost. —

the voltage settings
H .
HIiT



Voltage congestion” management using AC OPF

**The need to have ACOPF-based scheduling instead of AC
power flow-based analyses tools

“*Adjustments are supposed to work for both “normal” and
“abnormal” conditions. Service can be enhanced
significantly by using AC OPF*

**ACOPF-based mitigation for non-time-critical abnormal
conditions is very similar to the one with normal conditions

‘*Major assumption: sufficient automation is in place to
ensure stable system over operating ranges

*llic, Marija, Carvalho, Pedro, Lessard, Donald, ** Minimal Coordination of Dynamic Reserves for Flexible Operations at Value: The Case of Azores Islands”, IEEE PES GM 2021, Paper forum.



From analysis to optimization: Features of AC-XOPF

¢ Having the ability to find a solution within specified network and hardware constraints

*»* Having the ability to optimize with respect to all available decision variables, such as real
power generation, demand, and T&D voltage-controllable equipment

*** Providing as part of its output optimization sensitivities

** Providing support of effective resource management according to several optimization
objectives

*** Providing as part of its output LMPs, which are sensitivities of the performance objective
with respect to power injection change at each node in the network

o0J

LMP; = =
1

AC-XOPF is capable of adaptively switching between using different performance metrics.
This is essential for reconciling reliability and efficiency on-line when system conditions

and topology change significantly over time




Potential of using AC Optimal Power Flow (AC OPF)
for identifying grid operation bottlenecks*

Challenge Actions required — Actions required —based QUANTIFABLE
problem: based on typical ED on advanced microgrid DIFFERENCES
MICROGRID microgrid controller controller
CONTROL
Case S1 No steady state solution PV must produce reactive Can operate without
(Sheriff, high load, within limits power load shedding
low PV power) Need to add shunts at

critical buses

Case B1 No steady state solution Battery serve in grid forming Can operate without
(Banshee, within limits mode; optimized taps on load shedding
interconnected, critical transformers
all NoS)
Case B2 No steady state solution Both PV and battery serve in Can operate without
(Banshee, islanded within limits grid forming mode; key load shedding
all Ncs) transformer taps optimized

*Illic, Marija, Potential of Advanced Microgrid Control: Cases of Sheriff and Banshee,
EESG@MIT white paper WP-2017-1.



Question 2:Enabling feasible and stable modeling and control?
Possible way forward: Multi-layered functional specifications-energy dynamics

“*Interactive model of interconnected systems
--multi-layered complexity

--component (modules) — designed by experts for common
specifications (energy; power; rate of change of reactive
power)

--interactions subject to conservation of instantaneous power
and reactive power dynamics; optimization at system level in
terms of these variables

--physically intuitive models
IHhir



The main objective for understanding physics

**Understanding how to think of a stand-alone component within
the grid

**Understanding how to think of the interconnected power grid
**Based on this, understand the fundamental variables which

- must be sensed and controlled at the component level

-must be exchanged between the components

-make the case for physics-based processing underlying smarts”
design

Miao, X., lli¢, M., Smith, C., Overlin, M. and Wiechens, R., 2020, October. Toward Distributed Control for Reconfigurable Robust Microgrids. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE) (pp.
4634-4641). IEEE.

https://patents.justia.com/patent/10656609, Patent number: 10656609, April 2018. I - —
Miao, Xia, and Marija D. Ili¢. "High Quality of Service in Future Electrical Energy Systems: A New Time-Domain Approach." IEEE Transactions on Sustainable Energy 12, no. 2 (2020): 1196-1205. I I
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Basic ideas underlying the energy-based dynamical models

Inertia used as a C : .
proxy to rates at Synthetic inertia Heterogeneous end-end energy conversion processes
which energy can used. instead —non- g deling is becoming critical - inertia (or synthetic inertia) —
be generated physical based approximated system analysis no longer are valid
4 ) Basis for energy
as a state
Inverter :
variable
1 controlled
solar PV . .
Power conservation laws always hold at the interfaces of
""" components and/or sub-systems. _
g / Y Basis for real
Controlled : p()fwer as ?nb|
WHs interface variable
\ — j Not all power produced can be delivered fundamentally due to
] = mmeln™™ o mismatch in rates at which energy conversion processes of
WMM ﬁ - connected components take place — non thermal losses ought
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Unified multi-layered functional specifications
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P* 1‘pm£n, pmin pmin pmin .
- Bt B | pma Component i
Generalized dr:)op Bid functions Ei
5 % 1 |'mi|s_r:n Fkﬁ:
Electrical and non- Qo :';‘:;L‘:r;"'c‘;‘l .
electrical consumer| - Consumption
QoS: Specifications Lower layer deign and estimations
v control -

Fig 3: Energy-power model of a general component

Fig 4: Energy-power model of an interconnected microgrid

llic, M. D., & Jaddivada, R. (2018). Multi-layered interactive energy space modeling for near-optimal electrification of terrestrial, shipboard and aircraft systems. Annual Reviews in
Control, 45, 52-75.

- -
llic, Marija D., and Rupamathi Jaddivada. "Fundamental modeling and conditions for realizable and efficient energy systems." 2018 IEEE conference on decision and control (CDC). I I I I I
IEEE, 2018.



Provable IT--enabled prosumer participation? ..

Understood by engineers

s+ Common energv-based modeling of :
and economists !

heterogeneous prosumers

** Unified specifications

« For operations: (E,P,P)T triplet for operation

* For markets: Bids for each of the triplet A(E, P,P)T

“* Modeling and control for implementing prosumer
specifications

“* Signals for markets and operations aligned!
M



Multi-layered interactive model—ENERGY DYNAMICS

Interaction model: Interaction model:
. E;

By ==
' : : Tj
: — Wi Y, = [)S ﬁj=4Et,j_Qj

E. 3 4

H;(.)

X; X;

Stand-alone model: - ' . Stand-alone model:
X = failxs, ug, my, Py) ’ N | % = fr, (% w5 my, Py)




Basic R&D control challenge:

Overcoming complexity of modeling and control

Increased power electronics

Increased i
renewables Q\P“ P
- Battetry } V\m

Main utility
connection
/ (
Electric
vehicle

Residenti
load

Crux of the problem: Present controls
are designed for P,(t) without
considering its dynamical effects

/

/

Pmd

de

Radiation
dependen
current
source

t

Qodel of solar PV droop? Starting from physics!!!

Battery Control




(0.0)

Control co-design in energy spa

ce

***Control co-design, and rationale for using it for microgrids

*** Problem posing for co-design of Sheriff microgrid

*»*System design enhancements needed—hidden tra

DS

**The co-design problem formulation in energy power space

** Unified component specifications and interaction conditions

for feasible and stable service in energy space

***Case studies —1) comparison of dynamical performance with
today’s primary control; 2 the key role of optimal voltage

dispatch



Unified control co-design concept

Case studies Start Components
Variety of .’ redesign, reinforcement, reduction
(] af Cas5es
. . Cantrol systems
f;f;r:f:;*::: | Definition/design of components, control systems, models redeshon: Getuaters. sensors, algarths
scenarios, etc,) * [i2) * L3 Redesign
‘neluding: e ——— - i i
:N. ) & /— Control systems - Sub. :;’f&m mterac:tlmm
ind, waves, s~ Tk By
N Aerodyna ? | Rot _I Dri‘u; trélin Electrical ] End
currents... TOUY AT or B i objectives? ctnd
1 3 o™ e AN generator .
- Parameters i T+ [11)
) | Macelle .
of dynamic | (i5) . P N[ Power
models * ) i
Toswrer - alectrenics
Grid voltage, P Outputs
pes s Hydrodynamics | Platform Substation Mechanical loads, electrical
- Events,.. . (\ : currents, voltages,
Data [i4) Mooring Grid mechanical fatigue, power
E:nperimé-ntr. System Dynamics / generation, economics,
r — * environmental...
pproaches
(Al) Control-inspired parodigms, [A2) Co-Optimization, (A3) Co-Simulation

Garcia-Sanz, Mario. "Control Co-Design: an engineering game changer." Advanced Control for Applications: Engineering and Industrial Systems 1, no. 1 (2019): e18.



Unified component specifications and interaction conditions in energy
space for stable/feasible operations

Pl + AP} —

Input Specifications

PE + AP, —

Smart hardware

dp,"
PH+_

/

Control Saturation

dt
Output Specifications
dP*
PL + ~'ée
¢~ dt

Contradicting

Load profile

— Tistal roal o chaemuaend (im A
~Total reaciive power demand {in KVAR)
el Lasd

Tirme ([ mindtEs

“We want to buy at a
low price”

“We want to sell as much as
Interests of entities: possibleio maximize our profit ”

====

NN
N

LIV o

W4/ have no control
on ourselves”

Sufficient conditions feasible and stable
system in energy space:

e Components in closed loop dissipative
Cumulative power over time into the
component larger than cumulative power
out of the component

Distributed near optimal control—open R&D
(still need for minimal coordination)



Potential of plug-and-play primary/secondary controllers*

Challenge problem

State-of-the-art control primary control

Energy-based Plug-and-Play primary

control (with microgrid control)

Case S1

(Sheriff, high load, low
PV power)

Case S2.1

(Sheriff, islanded
feederl)

Case S2.2

(Sheriff, islanded
feeder 2)

Case S2.3

(Sheriff, islanded
feeder3)

Case S3 (sheriff,

reconnecting)

Stable; does not settle to the right voltage w/o
retuning; Induction motors when simulated result in
poor voltage profile

Stable; settles to right voltage if tertiary control set
points are accurate. Dynamic loads when used result in
poor voltage profile

Stable; Grid forming mode requires either lot of tuning
or requires proper selection of filter parameters to
ensure current evolves much faster than voltage.
Switches might hit saturation for large disturbances.

Stable; Short line model when used can result in over-
voltage; Large in-rush current produced by Induction
motors results in poor voltage profile

Stable; but the load is not served; might also damage
loads because of sudden drop in voltage; sensitive to
control gains on generators and solar PV

Stable; voltage profile around 1 p.u. is ensured by
generators re-adjusting their power output

Stable; voltage profile is good irrespective of the
load model used.

Stable; Doesn’t require any island detection loop
for different modes of operation. Same control
can be used in all the modes

Stable; Regulates voltage irrespective of the
line/load model

Stable; desired load is always served as the
generators reschedule themselves during sudden
islanding and ensure good voltage profile with
overshoots being within the protection limits

*Marija llic, Xia Miao, Rupamathi Jaddivada, Aidan Dowdle, “ Distributed Multi-Layer Energy-based Control for Stabilizing Microgrids”, MIT-EESG
Working Paper, February 5, 2017, 2017-2
*Marija llic, Xia Miao, Rupamathi Jaddivada, Aidan Dowdle, “Nonlinear Control Design for Plug-and-Play Integration and Operation in Electric
Energy Systems”, MIT-EESG Working Paper, February 5, 2017, 2017-3



Application on Test System 1: Sheriff grid to evaluate primary
control performance in systems with.induction motors

System simulated: Utility connected Sheriff with ave damag

. . ) machines if protection
two large industry scale induction motors does not exist
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Application on Test System 2: Banshee grid-utility
connected

Controller implemented: 1. PV in grid following mode 2. Battery in grid forming mode

Constant gain control Energy based control

- Generator real power outputs
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1.01

plication on Test System 2: Isolated Banshee

Il

Controller implemented: 1. PV in grid following mode 2. Battery in grid following mode

Constant gain control

Generator angular speeds
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OPTIMIZATION IN ENERGY SPACE--Importance of reactive power Q for efficiency

. . i 2 T T

** Capturing rate at which energy can be | | |

injected into neighbors | i | L

*»» Candidate supply function to establish | |

. . . . I [ i) [ :
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DyMonDS: Basis for simple protocols that work*
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*Ilic, M. D. (2010). Dynamic monitoring and decision systems for enabling sustainable energy services. Proceedings of the IEEE, 99(1), 58-79.
llic, Marija D. "Toward a unified modeling and control for sustainable and resilient electric energy systems." Foundations and Trends in Electric Energy Systems 1.1-2 (2016): 1-141.



Summary of lessons learned on four types of microgrids studied

*** Multiple factors affecting LCOE (operating metrics, pricing, control design---must work!)
** Given performance objectives, control has the potential to reduce [CapEx, OpEx] and
to increase AEP/load served

-Flores/Sao Miguel islands: 100% clean power without increasing LCOE

-Puerto Rico system: 40% increase in electricity service cost critical load served using AC OPF/distributed
MPC; 50% increase in serving critical load during extreme events

-Sherif/Banshee microgrids—reduced need for batteries; no load shedding

-IEEE 8,500 distribution feeder—proof of concept participation in transactive energy management while
managing voltage in systems with high penetration of solar power

¢ Reducing CapEx: Generally less expensive storage needed; control infrastructure cost
much smaller

** Reducing OpEx: Less fuel needed; less emission

*** Increased AEP by the renewables; increased load served during abnormal conditions

** Basic R&D challenge: Implementation of fail-safe transparent control

¢ Possible way forward— systematic modeling, control and pricing innovation Illil



Concluding thoughts

** [terative control co-design has a great potential for enabling microgrids to meet
both technical and economic performance. It should be considered.

*** Today’s approach to managing difficult conditions is to either build more expensive
batteries or to pre-program protection for load shedding for the case scenarios
considered to be the most challenging. This is both expensive, can lead to un-
necessary load shedding and does generally not guarantee stable/feasible
operation when system inputs vary continuously.

*** Research up to date shows the need to enhance control in particular using concepts
based on modeling in energy space.

¢ Minimal coordination should use AC Optimal Power Flow for scheduling both real
power and reactive power/voltage dispatch.



Concluding thoughts

*** Microgrids have great potential to serve localized needs of remote end users

*** They can also participate in end-to-end grid services as the availability of resources
and equipment status change

*** No longer possible to have pre-programmed grid protection and controllers
** DERs have generally both fast automation and model predictive decisions

** Recent R&D results indicate that much can be done in an entirely distributed
interactive way through minimal information exchange; autonomous grids?

¢ Unified protocols for characterizing DERs in energy space and testing conditions

using coarser models to ensure interactions conditions (for details, see

Paper Title: Architectures to support deployment of microgrids at multiple values, Paper Number: 20PESGM3515 ;

Paper Title: Microgrid control co-design for feasible and stable operations during large variations in system conditions
Paper Number: 20PESGM?2297



Conclusions

*¢* Novelty of MIT’s TE approach

= Quasi-static physics-based coupled droop relations derived and
integrated in the TE agents

" Framework for bidding designed for achieving implementable real and
reactive power bids, in response to real power prices and voltage
violation penalties.

= Advanced optimal power flow solver optimizes voltage deviations used

= Multi-rate simulations supporting the composite control design with the
bidding layer at the slowest timescale and control adjustments mapped
to real and reactive power adjustments at multiple time scales through
the closed-loop generalized droop relations.



Looking forward

**Much room for innovation at value

+»* Digitalization for decarbonization; distributed interactive
platforms; digital twins; ML/AI;

***Control implementation in complex nonlinear dynamical
systems.

**Technology-agnostic principles for modeling, simulations and
control

“**Next generation software & control for changing industry
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