BUILDING A LOCAL ENERGY COMMUNITY

STORY

LOCAL ENERGY COMMUNITIES

Renewable energy directive

Energy market directive

ELECTRICITY TARRIF

Cost reflective

Dump

• Energy component

- Distribution components
 - Grid costs
 - Meter rent
 - Subsidies rational energy use
 - Costs related to energy poverty
 - Maintenance for public lighting
 - Obligation to buy up green certificates
 - Reduction of regularly deficit
 - Public contributions CHP
 - Charges and evies
- Transmission components
 - Maintenance and operation of infrastructure
 - Operation of electric system
 - Reserve power and black start
- Market integration
- Offshore windturbine connection
- Green certificates
- Strategic reserve
- Subsidies on CHP, RES and rational energy use
- Contribution on masts and slots
- Federal charges
 - CREG (Commission on regulation on electricity and gas)
 - Denuclearisation
- Kyoto
- Protected clients (energy poverty)
- Heating subsidy
- Energy contribution
- Prosumer tariff

4

ELECTRICITY TARRIF

Cost reflective

EFFECTIVE FLEXIBILITY

Relevant

AGGREGATION

Market development

Value

Results, n=731

LOCAL ENERGY COMMUNITIES TH!NK E & OPHEMSTRAAT

TH!NK E

Unique Living Lab Battery Lab (Lead Acid/Lithium/Ni-Fe) Thermal Lab (VC/PVT/HP/SEASONAL/GEO) Electric Vehicles & Chargers (Tesla Model X – BMW i3) Smart Appliances

LOCAL ENERGY COMMUNITIES LEC TRANSITION

POWER QUALITY

OPHEMSTRAAT — OUD-HEVERLEE

Energy Production Photovoltaics (Solar ~60 kW) Fuel Cell (Gas to Electricity 1kW)

Energy Storage

Living Lab – Battery Lab (14kW/50kWh Li-FePO4) Neighborhood Battery (90kW/90kWh Lithium-Ion)

Flexible Devices

EV's & Chargers (6 Full Electric & 1 Hybrid ~400kWh)

Heat Pumps

Electric boilers

LIVING LAB

NEIGHBOURHOOD BATTERY

COMMUNICATION CHALLENGES

Communication = Essential in the LEC = Coordinated Energy transfers

- New Houses = Isolation = no GSM/3G/4G/LTE inside
- WiFi doesn't penetrate the building / basement
- Frequent Internet Connection Dropouts

Pay for use of the neighbor's internet connection?

Data & Energy Cost of Data Transfer?

Load Availability (EV gone during the day)?

INTEROPERABILITY

ABB doesn't talk to ABB

THEORY ≠ PRACTICE

Model predictive control

Start from simple and robust, the rest can be done later.

SOME DATA ON DATA

https://aceee.org/files/proceedings/2012/data/papers/0193-000409.pdf 17

11.08.2019

VACUUM SOLAR COLLECTORS

Energy production and efficiency

11.08.2019

THINK

Qth Qel SOC

	Solar radiation			
ΔT ₂₅ (K)	>1000W/m ²	≈1000W/m²	>800W/m ²	>600W/m ²
5	203	102	86	20
10	455	254	223	91
15	708	406	359	161
20	961	558	495	232
25	1213	710	632	302

Net extra yield for PVT set-up (W_{el})

QUESTIONS?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646426

Project STORY - H2020-LCE-2014-3

