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AC Optimal Power Flow
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Decomposition Based
Optimal Power Flow
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* Reformulate as bilevel problem .-~
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Master Problem: ,

min - C(x) + > G (%)
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Subproblems:
CGi(x) =min  Ce(ys; )
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s.t. he(ys; x) <0




Decomposition Based
Optimal Power Flow

* Allows parallelization ,

* Subproblems: solved using second .
order cone (SOCP) or other
relaxation techniques

* Master problem: general nonlinear
programming solver

* Caveat: GG(x) may be non-smooth



Non-smoothness

Ci(x) = min  Ci(yy; x)

Yt
s.t. he(yrnx) <0

@ Change of x may cause Cj(x) to be non-smooth.
@ Different inequality constraints being tight.




Smoothen subproblems by logarithmic barrier
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@ Large u: smoothed value function, but different from the
original function.

@ Small : value function still has high curvature.



Smoothing
Solve a sequence of problems:

min  C(x) + Z G (x, 1)

X

© Start with a large i to guide towards the solution.

@ Gradually reduce i, using previous solution as a warm-start.

o Ci(x, ) is smooth for fixed s.
@ Apply NLP solver to solve the master problem.
o Need to compute Ci(x), VxC(x), V2CH(x).



Numerical Performances

 Scales linearly with problem size

computation time

Network size




Demand Response

Independent System Operator

Generators Consumers/prosumers

Figure from www.gismart.eu



Sample price fluctuations

Real-time Electricity Price
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Figure: Hourly real time price per
megawatt-hour for Cambridge, MA for Dec 10,
2013 to Jan 7, 2014.



Demand Response
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Historical Demand Response
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Household Samples from UK DR project!

555000

5567 Households in London
1126 TOU experiment group
4486 non-TOU control group

Trial from beginning of 2011
to the end of 2014

Measured 30 min resolution

168 million measurements



‘'ime-of-Use vs Non-Time-of-Use:
‘emperature Effects
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Time-of-Use vs Non-Time-of-Use:
Seasonal Effects
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