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Power Grid and Natural Disasters

0 Natural disasters are the second biggest cause of large-scale outages in
the US

0O Where is the Challenge?

0 Uncertainties about the event, its spatial (and sometimes temporal)
scope, its severity and its consequences

0 Assets are likely to be already operating close to their designed limits

0 In the case of weather-induced hazards, renewable energy resources
are affected more

0 Traditional view of critical versus non-critical loads is not appropriate
anymore
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Power Grid and Natural Disasters

O What Can Be Done?
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Power Grid and Natural Disasters

0 Case Study: A wildfire is approaching the power distribution system

0 Objective: Find the most economical energy for dispatch of DER, DR and
Microgrid resources that minimizes the probability of lost load

0 Approach: 2-stage stochastic optimization: purchase reserves before the
onset of the event based on its expected impact, and dispatch them
during the course of the event
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Power Grid and Natural Disasters
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Variation in conductor ampacity based on different ambient temperatures and different wind speeds. For more
information see: M. Choobineh, B. Ansari and S. Mohagheghi, “Vulnerability Assessment of the Power Grid against
Progressing Wildfires,” Fire Safety Journal, vol. 73, pp. 20-28, April 2015.
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Power Grid and Natural Disasters

QO Problem Formulation:
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Power Grid and Natural Disasters

Recourse
VEUELIES

Scenarios

First Stage Variables A =0.50 % =0.60 1 =0.70 % =0.80
P 11.691 13.738 14.941 15.975
Quus 4.708 5.343 5.528 6.005
B - b © a b c a b G a b € a b c
[ Py | Pg21
I 0300 0.400 0.400 Pgas 0.300 0.400 0.400 0.284 0.400 0.400 0.245 0.400 0.356 0.019
| Py | Pgai
[ P.,, | 0.046 Pgaz 0.046 0.046 0.046 0.046
| P | Pgas
| Porrgs | Por11
| Porroo | Por12
| Porrog | Por13
[ Porrog | Porz2.1 0.052  0.040 0.052 0.052
[ Eheman B 0.184 0.184
| Porrog | Por23
[ Ehemaa By 0.300 0.194
[ Brmmasl Pprsy  0.062 0.062
R Porsz  0.160 0.160
[ Brmmaa Pprss  0.080 0.040
Bl Porss  0.160 0.160
[ Porea: | Poras  0.080
| Prerss | Pbras 0.001 0.001
| Porrag | Eonin
| Porras | Poras
| Porrac | Poras
DRR.4 PDR,4,7
u, 1 1 1 1
u, 0 1 1 1
Us 1 1 1 1
u, 1 1 1 1
L 71, 75, 86, 94, 95 71, 75, 86, 96 71 9
Shed

Fire approaching line 53-54, which affects a large section of the network. A represents the ratio of available line capacity
to maximum capacity. For more information, see: B. Ansari and S. Mohagheghi, “Optimal Energy Dispatch of the Power
Distribution Network during the Course of a Progressing Wildfire,” International Transactions on Electrical Energy

Systems, vol. 25, no. 12, pp. 3422-3438, December 2015
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Concluding Remarks

0 Difficult problem to solve when time horizon extends beyond a day or
two, or if there is a need for granular dispatch

0O Exact problem is almost always nonlinear mixed-integer

0 Incorporating reactive power into the formulations makes the problem
qguadratic and sometimes non-convex

0 The problem is typically multi-objective with usually contradictory
functions, and Pareto optimality need to be ensured

0 Success depends on having “reasonable” uncertainties
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