DC Power Distribution in Commercial Buildings

Why DC?

- DC-based distributed generation such as photovoltaic and wind
- On-site DC electrical storage
- The most efficient types of loads are natively-DC (LEDs, electronics, EV charging, induction stoves, and variable speed motors in HVAC and water heating)
- Power electronics
- DC Power Standards: USB, Ethernet, Communications

Technology and Market Trends

- Energy Savings in Zero Net Energy (ZNE) Buildings with large solar and storage capacity
- Simpler power electronics: better cost and reliability
- Reliable microgrid islanding through power electronics allows for low-cost disaster resiliency
- Improved power quality
- Combined data and power allows for communications

Energy Simulation

- Develop Modelica models of AC and DC medium office building in Los Angeles
- Zero net energy building with all electric loads internally DC
- Solar profiles from PV Watts, and load profiles from EnergyPlus, and converter efficiency curves from product data
- Use parametric simulations to determine when DC is beneficial and by how much

Techno-Economic Analysis

- Results determined from market cost data, grid tariffs, and Monte-Carlo analysis
- First cost is higher for DC
- Given the enormous efficiency savings, the payback period is less than a year
- End-use costs, installation costs, and other soft costs not considered

Experimental Load Modification

- Modified AC loads to take a DC input
- Demonstrated savings with DC input
- Determine how each type of load should be modified to benefit most from DC

Potential Benefits

- Zero net energy building with all electric loads internally DC
- Solar profiles from PV Watts, and load profiles from EnergyPlus, and converter efficiency curves from product data
- Use parametric simulations to determine when DC is beneficial and by how much

Analysis Approach

- **Energy Simulation**
 - Develop Modelica models of AC and DC medium office building in Los Angeles
 - Zero net energy building with all electric loads internally DC
 - Solar profiles from PV Watts, and load profiles from EnergyPlus, and converter efficiency curves from product data
 - Use parametric simulations to determine when DC is beneficial and by how much

- **Techno-Economic Analysis**
 - Results determined from market cost data, grid tariffs, and Monte-Carlo analysis
 - First cost is higher for DC
 - Given the enormous efficiency savings, the payback period is less than a year
 - End-use costs, installation costs, and other soft costs not considered

- **Experimental Load Modification**
 - Modified AC loads to take a DC input
 - Demonstrated savings with DC input
 - Determine how each type of load should be modified to benefit most from DC

Future Research

- Develop detailed converter loss models to help compare AC and DC
- Develop a DC Design Tool to help building designers compare
- Field test upcoming and developed DC building systems

Industry Need:

- Quantify the benefit of DC Distribution

DC Design Tool Provides:

- Fair and Accurate Cost/Benefit Analysis

Contact:

- dgerb@lbl.gov
- Website: dc.lbl.gov

We thank U.S. DOE and CEC for supporting this work!