Grid Flexibility Support of a Microgrid by Integrated Control of Distributed Energy Resources

Hirohisa Aki, Takayuki Kumamoto and Masayoshi Ishida
Faculty of Engineering, Information and Systems
University of Tsukuba, Japan

- Grid flexibility dispatch by controlling distributed energy resources (DER) of prosumers was proposed.
- DER are controlled by an energy management system (EMS) which is installed on-site.
- Possibility of flexibility dispatch by DER responding to incentives was evaluated by an operational simulation.

Introduction

- Power systems need more flexibility in adapting to the high penetration of variable renewable energy (VRE).
- The flexibility can be provided by demand-side by controlling distributed energy resources (DER).
- Flexibility dispatch by DERs responding time-of-use (TOU) rates change was evaluated by operation simulation including energy trading among an aggregator and prosumers.

Case Studies by Simulation

- Interactions between an aggregator and prosumers.

Simulation Result

- 7 days in spring, summer, and winter
- 2 cases compared (Case 1: flat rate, Case 2: TOU rate applied)

DER in Residential Dwellings

- Fuel cell CHP systems (FC-CHP)
 Natural gas → electricity & hot water
 Electricity generation: 0.70-0.75 kW
- CO2 heat pump water heater (CO2HP)
 Electricity → hot water
 Electricity consumption: 1.0-1.5 kW

Primal role: electricity and hot water supply
- No additional costs for flexibility supply
- DER is cost effective resource for grid flexibility

- Revise TOU rates to aggregated net electricity demand flattening.

Conclusion

- Appropriate TOU rates and integrated control of DER contribute to flexibility and net electricity demand flattening. The effect varies to energy demand and types of DER.
- TOU rates are influenced by PV generation (= weather) because the peak generation of PV is large and its impact to electricity balance is significant.