2010 Vancouver Symposium on Microgrids

U.S. Department of Energy’s Research & Development Activities on Microgrid Technologies

Merrill Smith
Program Manager
Office of Electricity Delivery and Energy Reliability

July 21, 2010
Defining Microgrids

<table>
<thead>
<tr>
<th>Microgrid Definition</th>
<th>What a microgrid is NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A microgrid is an integrated energy system consisting of interconnected loads and distributed energy resources, which as an integrated system, can operate in parallel with the grid or in an intentional island mode.</td>
<td>• One form of technology (e.g. a microturbine in a commercial building) – this is distributed generation</td>
</tr>
<tr>
<td></td>
<td>• A group of individual generation sources that are not coordinated</td>
</tr>
</tbody>
</table>

Evolving Definition

• Newly developed definitions will be presented.
Microgrids Enhance Security and Reliability of the Distribution Infrastructure

DOE’s Goal: lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supply.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>DOE Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency</td>
<td>Increase efficiency of the electric delivery system through reduced energy losses.</td>
</tr>
<tr>
<td>System Efficiency</td>
<td>Reduce peak price and price volatility of electricity, increased asset utilization and provide accessibility to a variety of fuel sources.</td>
</tr>
<tr>
<td>Reliability</td>
<td>Strengthen grid stability and reduce the frequency and duration of operational disturbances.</td>
</tr>
<tr>
<td>Security</td>
<td>The energy infrastructure is hardened to detect, prevent and mitigate external disruptions to the energy sector.</td>
</tr>
</tbody>
</table>

Microgrid Enhanced Distribution

- Ease of CHP application
- Supports increase of renewables—firms intermittent resources
- Arbitrage of energy price differentials
- Enhance G&T by use of plug-and-play DER for peak shaving
- Enhance reliability with Intentional islanding
- High Local Reliability
- Energy during outages
Microgrid Research and Development Test Beds
CERTS Microgrid – Test Bed

Objective

Expand CERTS Microgrid concepts to address system integration challenges presented by need to accommodate intermittent, distributed renewable electricity sources within utility distribution systems.

Technical Scope

The CERTS Microgrid Test Bed is being expanded through the addition of new hardware elements: 1) a PV emulator and inverter; 2) a more flexible energy management system for dispatch; 3) a commercially available, stand-alone electricity storage device with CERTS controls; 4) a CERTS compatible conventional synchronous generator.

Design Characteristics

- **Designed for high reliability**
 - Insures redundancy: n + 1 sources.
 - Based on autonomous local control for fast events (No central controller)
 - Maximizes flexibility: uses plug-and-play peer-to-peer models; no custom engineering

- **Promotes intentional islanding**
 - Insures stability for multi-sourced systems.
 - Seamlessly separates and automatically resynchronizes with the grid.
Hawaii Clean Energy Initiative

- Goal: Hawaii will supply 70% of its energy needs with clean energy by 2030
- Activities in Hawaii Will Demonstrate Impacts of High Renewable Penetration and Can be Applied to the Mainland
- Strategic Projects will help overcome technical barriers and drive State policy

Example HCEI Project
Island of Lanai
Lana’i Grid

- Solar Array
 - Twelve 125kW SunPower Arrays
- Satcon Inverters
 - Twelve Gen1 135kW
 - IEEE 1547 range extended
 - Curtailment Control
- CHP Unit
- Energy Storage (Planned)
 - GNB Absolyte 1400 Ah Cells
 - 405kW; 750 kWh
International Team Demonstrating Microgrids with Renewables in New Mexico

NEDO project

NEDO μGrid-EMS

PV fluctuation following order to DG and Thermal storage

Direct control signal (On/OFF signal etc.)

Independent operation possible building
PV100kW, Gas Engine Cogeneration, BEMS, Ice Thermal Storage

Aperture Center

NEDO House II (Option)

Power flow monitoring at border of micro-grid

Monitoring PV output

Substation

Other Buildings Battery Storage (PNM) PV System (PNM) Residential Houses (with Smart Meter)
Distributed Energy Controls and Communication Laboratory

DECC is a unique R&D facility for testing reactive power producing distributed energy resources

- Develop, Simulate, and Test Adaptive Controls
 - Develop adaptive controls for inverter-based distributed energy when there are multiple inverters on the same feeder.
 - Expand adaptive controls for a single inverter-based DE

- Air Conditioning Motor Stall Dynamic Study
 - Explore impact of high penetration high seasonal energy efficiency ratio (SEER) A/C units on power systems during sub-transmission faults
 - Assess impact of A/C stall on the distribution and transmission system

- Catalina Island Dynamic Study
 - Develop a dynamic model of the Catalina Island power system for studying the impacts of a high penetration of renewable energy (RE) resources and the benefits of adaptive inverter controls.
 - Show the interaction between the inverters, generators and loads as frequency and voltage change
 - Simulate the dynamic response of inverters and generators to provide real power and reactive power support, and simulate responsive loads.
 - The study will identify applicable engineering guidelines for high renewables penetration on the bulk power system.
Microgrid Research and Development Test Beds
Energy Surety MicroGrids

- DOE and DOD jointly fund Sandia National Laboratory to work with military bases to develop energy surety microgrid conceptual designs
 - Electric Power Reliability Impacts Mission Performance
 - Microgrids can improve mission readiness and alleviate disruptions

- Approach and Benefits
 - Identify base energy infrastructure changes to increase energy supply reliability to support base critical mission readiness
 - Supports base energy security by improving utilization of on-site distributed generation resources and supports integration of renewables
 - Document ESM Lessons Learned to benefit others
Energy Surety Microgrid Projects

- **Army**
 - IMCOM exploring two additional sites
- **Navy/Marines**
 - Indian Head*, Camp Smith
 - Guam/Okinawa* in consideration
- **Air Force**
 - Maxwell AFB*, Kirtland AFB*, Schriever AFB, Vandenberg AFB
- **PACOM/NORTHCOM** proposing SPIDERS JCTD in Hawaii and Colorado

* Indicates OE/DoD Funded
All others FEMP funded
Peak Load Reduction Microgrid Projects

- Projects are either microgrids or are developing technologies that will advance microgrids.
- Objective: To encourage use of distributed resources to provide power during peak load periods (minimum of 15% reduction in peak load on distribution feeder or substation) and for other functions and services.
- Systems must be capable of operating in both grid parallel and islanded modes.
- $55 million of DOE funds over five years (total value of awards will exceed $100 million, including participant cost share).

Benefits
- Increases grid reliability
- Addresses vulnerability of critical infrastructure
- Helps manage peak loads and defers T&D investment
- Lowers emissions and utilizes fuel resources more efficiently
- Helps customers manage energy costs
Peak Load Reduction Microgrid Projects

- **Chevron Energy Solutions**—CERTS Microgrid Demo at the Santa Rita Jail - large-scale energy storage, PV, fuel cell
- **SDG&E**—Beach Cities Microgrid - demand response, storage, outage management system, automated distribution control, AMI
- **U of HI**—Transmission Congestion Relief, Maui - intermittency management system, demand response, wind turbines, dynamic simulations modeling
- **UNLV**—“Hybrid” Homes - Dramatic Residential Demand Reduction in the Desert Southwest - PV, advanced meters, in-home dashboard, automated demand response, storage
- **ATK Space System**—Powering a Defense Company with Renewables - Hydro-turbines, compressed air storage, solar thermal, wind turbines, waste heat recovery system
- **City of Fort Collins**—Mixed Distributed Resources - PV, bio-fuel CHP, thermal storage, fuel cell, microturbines, PHEV, demand response
- **Illinois Institute of Technology**—The Perfect Power Prototype - advanced meters, intelligent system controller, gas fired generators, demand response controller, uninterruptable power supply, energy storage
- **Allegheny Power**—WV Super Circuit Demonstrating the Reliability Benefits of Dynamic Feeder Reconfiguration - biodiesel combustion engine, microturbine, PV, energy storage, advanced wireless communications, dynamic feeder reconfiguration
- **ConEd**—Interoperability of Demand Response Resources - demand response, PHEVs, fuel cell, combustion engines, intelligent islanding, dynamic reconfiguration, and fault isolation
ARRA
Smart Grid Demonstration Program

• 32 projects/$620 million to demonstrate advanced Smart Grid technologies and integrated systems that will help build a smarter, more efficient, more resilient electrical grid

• Projects include large-scale energy storage, smart meters, distribution and transmission system monitoring devices, and a range of other smart technologies, and will act as models for deploying integrated Smart Grid systems on a broader scale

• These demonstration projects will further our knowledge and understanding of what works best and delivers the best results for the Smart Grid
ARRA Smart Grid Demonstration Projects
Microgrid Technologies

- **Los Angeles Dept of Water and Power**—Fully integrated SG – demand response, consumer energy use data/behavioral studies, PHEV

- **Kansas City Power and Light**—Green Impact Zone – urban end to end SG, roof-top solar, storage, EV charging, distribution automation, customer programs and energy management interfaces

- **Pecan Street Project**—Brownfield redevelopment – mixed use development with green building initiatives, EV charging and V-2-G, PV, customer energy management, distribution optimization

- **Center for Commercialization of Electric Technologies**—Technology Solutions for Wind Integration and Texas Future Community – community energy storage, demand response programs, load interruptible appliances smart meters, residential PV, green building standards, EV charging

- **Southern California Edison**—Irvine Smart Grid Demo – end to end SG from transmission to customer devices, looped distribution topology, societal/environmental efficiencies
Federal programs, institutions, and the private sector are increasing microgrid development and deployment. The number of successfully deployed microgrids will verify the benefits and decrease implementation risks further expanding the market for microgrids.
ARRA: Smart Grid Investment Grants
(100 projects: $3.4B Federal; $4.7B non-Federal)

<table>
<thead>
<tr>
<th>Smart Grid Systems and Equipment</th>
<th>Numbers of Units (self-reported estimates)</th>
<th>Improvements</th>
<th>Impacts</th>
</tr>
</thead>
</table>
| Networked Phasor Measurement Units | 877 | • Near-nationwide coverage
• 6X the 166 existing networked PMUs | Enhanced situational awareness and electric system reliability and resiliency |
| Smart Transformers | 205,983 | • Enables preventative maintenance | |
| Automated Substations | 671 | • 5% of 12,466 transmission and distribution substations in U.S. | |
| Load Control Devices | 176,814 | • Enables peak demand reductions | 1444 MWs of peak demand reduction per year (self-reported estimates) |
| Smart Thermostats | 170,218 | • Enables peak demand reductions | |
| Smart Meters | 18,179,912 | • 13% of the 142 million customers in the U.S. | Transformational changes in consumer behavior and energy consumption |
| In-Home Display Units | 1,183, 265 | • Enables customer empowerment | |
| PHEVs / Charging Stations | 12 / 100 | • Accelerates market entry | Begins the path toward energy independence |
Microgrids in the News

THE HILL

Microgrids are key to future energy strategy
By Guy Warner - 05/04/10 03:17 PM ET

Microgrid Markets and Opportunities — A High Growth Element of the Emerging Smart Grid
June 10, 2010

The Washington Post

Pareto Energy to build 'microgrid' for Howard University
Monday, July 5, 2010

FAST COMPANY

Why the Microgrid Could Be the Answer to Our Energy Crisis
By Anya Kamenetz July 1, 2009

Microgrids key to the Smart Grid’s evolution
SBI Energy Report: www.sbireports.com

TECHPULSE 360

The Micro Grid As Smart Grid Of The Future, Sophisticated Software Under Development
April 13, 2010

Pike Research

Microgrids: Islanded Power Grids and Distributed Generation for Community, Commercial, and Institutional Applications
Report Released 4Q 2009
Information Sources

Office of Electricity Delivery and Energy Reliability Web Site
http://www.oe.energy.gov

Smart Grid Web Site
http://www.smartgrid.gov

Sandia National Laboratory – Energy Systems