Microgrid R&D in KERI

2010-7-21, Vancouver

New & Renewable Energy System Research Center Smart Grid Research Division Korea Electrotechnology Research Institute

JongBo Ahn(jbahn@keri.re.kr)

Contents

- I. Short history of Microgrid research in KERI
- II. Pilot Microgrid in KERI
- III. On-going projects and future works
 - Inside KERI
 - National project
- IV. Conclusion & Vision

I. Short history of Microgrid in KERI

■ Microgrid projects in KERI

- ✓ Development of autonomous Microgrid(2004–2005, J. B. Ahn)
 - First Microgrid project in Korea
 - DG infrastructure installed : PV, WT, BESS, D/E etc
 - Government-support projects funded : PV-WT hybrid system etc
- ✓ Development of Prototype KERI Microgrid(2007–2009, J. H. Jeon)
 - Focus on developing core technologies and devices: u–EMS, IED/STS
 - 120kW class prototype Microgrid completed: Testbed for devices and system
 - Real/Simulated DG, Simulated Load, EMS, Grid-connected/Stand-alone mode, Re-Sync.
 - Unique Microgrid system in Korea
- ✓ Development of 200kW LV Microgrid commercialized version(2009–, S.M. Kwon)
 - System upgrade for actual load : Network, ESS, PV, WT 등
 - Planed for operation in KERI research building
 - Attempt to commercialize MG for building: enhanced power quality, CHP/ESS applied, integrating BEMS with MG

✓ System configuration in 1st phase

✓ DG & Infrastructure

✓ Infrastructure

▲ Tr. For MG

▲ Hybrid, BESS

▲ RTDS, Power Amp

▲ Passive Load

▲ Weather Suite

▲ D/L Module

- ✓ Core devices & technologies
 - PCS for MG
 - EMS
 - STS/IED
 - Design & analysis tech.
 - Engineering tech.

II. Pilot Microgrid in KERI

Distinguishing features of KERI Microgrid

- ✓ Controllable/Uncontrollable DG
 - Controllable DG : D/E, BESS, FC
 - Uncontrollable/Intermittent DG: PV, WT
 - For functional test of EMS considering operational characteristics of DG's
- ✓ Real/Simulated DG
 - Real DG: PV, D/E, FC, BESS
 - Simulator : PV, WT, CHP
 - For low initial investment, repetitive test on same condition, easy operation regardless of weather condition
- ✓ Critical/Sheddable Load
 - Critical Load : keep PQ
 - Sheddable Load : Supply-Demand Balance by DLC
- ✓ Simulated Co-generation and thermal load
 - Natural gas service and G/E not available in KERI
 - Simulated thermal load and supply implemented on EMS S/W

□ PV array vs. PV Simulator

- ✓ PV array : dependent on weather condition
- ✓ PV simulator
 - can change the solar irradiation arbitrary
 - DC power supply emulating I-V characteristic curve of PV array

▲ PV array

▲ PV simulator

■ WT vs. WT Simulator

- ✓ Wind Turbine : dependent on weather condition(wind speed)
- ✓ WT simulator
 - can change the wind pattern arbitrary
 - M-G set emulating wind turbine and generator

$$P_{M} = \frac{1}{2} \rho \pi R^{2} C_{P} V_{WIND}^{3}$$

$$= \frac{1}{2} \rho \pi R^{5} C_{P} \frac{\omega_{M}^{3}}{\lambda^{3}}$$

$$P_{M} = \frac{1}{2} \rho \pi R^{5} C_{P} \frac{\omega_{M}^{3}}{\lambda^{3}}$$

▲ Measured wind pattern & M-G set

■ Load vs. Load Simulator

- ✓ Measured the actual load pattern
- ✓ Load Simulator
 - Scaling from actual load pattern: light/heavy load
 - Active/Reactive load changing by PLC controlled RLC passive load bank

▲ Load bank & controller

□ CHP Simulator

- ✓ CHP is essential for economic point of view in Microgrid
- ✓ Thermal load, CHP equipment and gas supply needed
- ✓ CHP Simulator
 - Gas engine: emulated by diesel engine
 - Thermal load: use pattern data in EMS

▲ Typical G/E output char.

▲ EMS & thermal load pattern

□ IED/STS

- ✓ IED(intelligent electronic device)
 - Integrated measuring and protection
 - Re-synchronization
 - Power quality monitoring
- ✓ STS(static transfer switch)
 - Thyristor-based switch
 - Auto/Manual/Bypass mode

▲ IED

► IED/STS Panel

III. On-going projects & Future works

□ KERI Microgrid projects : Target

- ✓ AC-DC integrated power system for LV customer
- ✓ Actual load test in demonstration site : building in KERI

✓ Integration of DC distribution equipments – Home & building

✓ System upgrade(I) : EMS

- Functions implemented
 - Export/Import control at PCC
 - Supervisory control of BESS
 - Thermal load following
- Functions planed
 - Forecasting: load & generation
 - Generation scheduling : Unit Commitment
 - Economic dispatch

Generation Schedule & Dispatch	Supervisory Control
 Make the balance between demand and supply Optimize the objective function related to Microgrid system For the generation schedule & dispatch: Forecast (Load & Renew Gen), UC and ED Algorithm 	 Tie-line control (Power and voltage control at PCC) Upstream power system fault detection and disconnection Reconnection to upstream power system Secondary regulation regarding energy storage system

✓ System upgrade(II): ESS(energy storage system)

- Modular PCS for Supercapacitor & Battery
- Battery operational technology for prolonging battery life
- Technology for minimizing ESS at stand-alone mode: variation of load and DER output
 Wind turbine
- Combined ESS: Supercapacitor & Battery → Fast response & battery life prolongation

✓ System upgrade(III) : Energy sources

Phase 3 Pilot Plant Structure

✓ Components

- 9 Sources, MMS, IED/STS, Loads
- •2 DGs (20kVA D/E, 50kVA D/E)
- •5 Renewables (20kVA PV/Wind Hybrid, 30kW PV, 10kW Wind, 10kW Thermo-Electric, 1kW Fuel Cell)
- 2 Storage (50kW BESS, 30kW EDLC)

✓ Operations

- PCC Power Flow Control in connected Mode
- Transition to Islanded Mode/Resynch.
- Frequency and Voltage Control in Island Mode
- Economically Optimized Dispatch
- Black Start, Power Quality Compensation

✓ Purposes

- Operation Test with Real-Site Load
- Demonstrate a Low Voltage Commercial Power Supply System

■ National projects on Microgrid

√ Phase II(2010-2012) plan

1-sub project (KEPRI)

- Develop core devices :EMS, GW, PCS, POCC
- Grid-connected type site construction & performance evaluation

2-sub project (KERI)

- Stand-alone type site construction & performance evaluation
- Develop engineering tech.
- Support for standardization & mitigation of regulation
- Device provides : EMS, GW, PCS etc
- Device test: Before installation
- Technical support for grid-connected type: Basic design, spec., procedure of test

✓ Construction of Stand-alone MG site & Development of engineering tech.

Summary

- [Definition] Proof of platform for smart renewables
- [Target] Construction of Independent MG Site(Several 100kW class)
- [Period] 2010-2012(3yr)
- [Budget] \$2M

IV. Conclusion & Vision

□ KERI Microgrid Vision

Microgrid can be core technology under smart grid : KERI will lead microgrid technologies

Conclusion

- ✓ Brief history of Microgrid research in KERI
 - 1st phase : Basic infrastructure implemented
 - 2nd phase: Pilot plant rated 120kW with simulated load/DG's
 - 3rd phase: Actual demonstration site rated 200kW with real load/DG's
- ✓ System upgrade for demonstration site
 - Upgrade : EMS, ESS, Network etc
 - AC/DC integrated power supply system in KERI building
- ✓ Construct independent Microgrid in Gapa island by 2011
- ✓ Vision of KERI Microgrid technology

Thank you for attention!

