

Microgrid Controller Requirements

Mark McGranaghan

Electric Power Research Institute

Presented at
Microgrids Symposium
Tianjin, China
November, 2014

EPRI

EPRI's Mission

To conduct research, development and demonstration on key issues facing the electricity sector on behalf of our members, energy stakeholders, and society

Affordable

Our Members...

- 450+ participants in more than 40 countries
- EPRI members generate more than 90% of the electricity in the United States
- International funding of more than 18% of EPRI's research, development and demonstrations
- Programs funded by more than 1,000 energy organizations

Challenges for the next generation power system – microgrids part of all these challenges

Architecture and Interoperability

Distributed Controls Integration

Model Based Management

Cut Agrees All Lovels of the Crid

Challenges and R&D Needs Cut Across All Levels of the Grid

Microgrids as part of Resiliency Strategies

- Expanding T&D expensive and difficult
- Hardening of grid very expensive
- Local resiliency sources can be very strategic

Hardening Measures

Recovery Measures Survivability
Measures

Microgrids and PV

Smart Inverter Technology

DC Power

AC Power

Traditional Inverter Functionality

- Matching PV output with grid voltage and frequency
- Providing safety by providing unintentional islanding protection
- Disconnect from grid based on over/under voltage/frequency

Smart Inverter Functionality

- Voltage Support
- Frequency Support
- Fault Ride Through (FRT)
- Communication with grid

Energy Storage has many functions

Load Shifting

Peak Shaving

© 2013 Electric Pow

Electric Vehicles and Smart Appliances can be part of the energy management

Microgrids are about Local Energy Optimization

The integrated grid allows Local Energy Optimization to become part of Global Energy Optimization.

The Utility Challenge: Integration of Microgrids

Regulatory Challenges:

- Ownership of generation
- Administrative burden of regulation

Technical Challenges:

- Bi-directional power flows
- Fault current contribution
- Unit Level Volt/VAR support
- Islanded Operation

Economic Challenges:

- DG technologies still costly and with uncertain lifetimes
- Business model still undeveloped

Development of an integrated approach to microgrids opens many opportunities

Microgrid Design Parameters

- Number of customers served
- Physical length of circuits and types of loads to be served
- Voltage levels to be used
- Feeder configuration (looped, networked, radial)
- Types of distributed energy resources utilized
- AC or DC microgrid
- Heat-recovery options
- Desired power quality and reliability levels
- Methods of control and protection

	Urban Utility Microgrids	Rural Utility Microgrids	Non-Utility Microgrids	Remote / Island Microgrids
Application	Downtown Areas	Planned Islanding Load Support	Commercial / Industrial Clusters University Campus Residential Development	Remote Communities and Loads Geographical Islands
Main Drivers	Improved Reliability; Outage Management; Renewable and CHP Integration		Reliability and Power Quality Enhancement; Energy Efficiency;	Electrification of Remote Areas
Benefits	Improved Reliability; Fuel Diversity; Congestion Management; Greenhouse Gas Reduction; Upgrade Deferral; Ancillary Services		Premium Power Quality; CHP Integration; Demand Response Management	Supply Availability Integration of Renewables
Grid- Connected	Primary Mode of Operation		Primary Mode of Operation	Never
Intentional Islanding	Nearby faults or System Disturbances Approaching Storms		Nearby faults or System Disturbances Times of Peak Energy Prices Approaching Storms	Always Islanded

Source: Johan Driesen and Farid Katiraei, "Design for Distributed Energy Resources," IEEE Power & Energy Magazine, May/June 2008

One option – Integrating Customer DER with Utility Assets

Grid Interactive Microgrid Controller for Resilient Communities

- Objective: Develop, configure, test utility-ready, open standardcompatible microgrid controller
- Period of Performance: Sept 30, 2014 – Sept 30, 2016
- Microgrid Controller Requirements
 - Standardized & Scalable
 - Customizable and Interoperable
 - Consistent Implementations support integration
- Three-Tiered Testing and Evaluation

Utility Participants and Target Sites

- Central Hudson Gas & Electric
- New York Power Authority
- National Grid
- Orange & Rockland
- United Illuminating
- Duke Energy
- Entergy
- Tri-States G&T
- Southern Company
- T\/A
- PEPCO
- Public Service of New Mexico
- Hydro Quebec
- Xcel

Target Communities

- Bridgeport, CT
- Woodbridge,CT
- Buffalo Niagara Medical Campus

Controller Requirements

Modes of Operation

Mode 1 – **Connected to the Grid** (Local Energy
Optimization Mode)

Mode 2 – **Emergency Mode** Connected to the Grid (Operation to Support Grid)

Mode 3 – **Islanded Mode** (Optimization of Supply to Critical Loads)

Microgrid Technical Challenges: Protection

- Not enough short-circuit current in Microgrid mode for protection to sense and operate
 - Voltage-based protection was recommended: No need for multiple settings group to support grid or islanded operation
 - May require additional equipment and change in protection settings.
- Insulation coordination could be an issue
- Microgrid operation may result in loss of effective ground reference

Keeping protection scheme simple translates into improved dependability as well as much simpler analysis in the event of misoperation

Use Cases and Functional Requirements

Requirements	Use Case	Scenario	Step
Sensors shall transmit status to the Microgrid Controller.	2	1	1
If the microgrid cannot support the estimated critical facility maximum load, then the Microgrid Controller shall issue an alarm to the operator.	2	1	2
If the monitored frequency within the microgrid falls outside of the pre-specified range, Microgrid Controller shall generate an alarm to the operator.	2	1	3
If the voltage has been outside of the pre-specified limits for longer than the predefined time period, Microgrid Controller shall increase or decrease on-site energy supply as required to bring the voltage to within the pre-specified range.	2	2	2
If the voltage has been outside of the pre-specified voltage limits for longer than the predefined time period, Microgrid Controller shall generate an alarm to the operator.	2	2	3

Use Case Scenario	Information Producer	Information Receiver	Name of information exchanged
3.1	SCADA System	Operator, Microgrid Controller	Critical circuit status - switchgear status (open/closed)
3.1	Generator	SCADA System	Critical circuit status – generator state (off, pre-armed, armed, generating)
3.1	Automated Switch	Operator, SCADA System	Critical circuit status – generator state (off, pre-armed, armed, generating)
3.1	Operator	SCADA System	Commands to devices in the critical circuit

Communication Protocols and Requirements

Feasibility Assessments – Utility Compatible Grid Interactive Communities

- Identify scope/attributes for microgrid community
- Identify the need, objectives, and benefits
- Identify amount and type of generation mix
- Identify islanded operation modes
- Identify loading conditions, critical load identification, DER types, advanced grid support functions, coordination & control strategies
- Identify any EE and DR options
- Identify infrastructure upgrades
- Identify the tool for the evaluation
- Conduct analysis
- Evaluate range of options

Taking an Integrated Grid Approach

- Customized feasibility studies
- Utility specific Technical/Economic analysis

Working Towards an Integrated Grid

