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Microgrid Storage Integration
Energy vs Power Applications in Microgrids
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Microgrid Storage Integration
Key Technologies
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Projected Cost Reductions of LIB ($/kWh)

0

200

400

600

800

1000

1200

1400

1600

2010 2015 2020 2025 2030

Bloomberg New Energy Finance Navigant Research Deutsche Bank IHS (iSuppli)

*) final prices include margins most probably in the range of 30-40%



Battery Aging Model
Overview

 Battery capacity fading is a limiting 

factor for BESS performance

 Customers usually expect a certain 

battery life in years or number of 

cycles for a given application

 Battery manufacturers usually over-

dimension the battery to reduce the 

risk of earlier system depletion

 We recommend to include battery 

aging models in the design of and 

operation strategies for BESS

Source:batteryuniversity.com

Source: skywriting-net



Battery Aging Model
LIB Model

 We propose a semi-empirical model

 Capacity fades due to battery 

cycling and time elapsed 

ὰ
ὴ Ὡ ρ ὴ Ὡ

ὰ = ὰ + ὰ

 Cycling aging is fully dependent on 

battery usage and is modeled as a 

sum of aging during each cycle

 Calendar aging is independent of 

battery usage and is modeled as a 

linear function of time, average SoC 

and temperature
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Battery Aging Model
LIB Test Data vs. Model Reconstruction 
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Advanced Battery Control Strategies
Combination of application and SoC control

 Due to a battery inefficiency and in some 

applications due to a none zero mean control 

signal, the BESS can be totally discharged or 

charged in a short time interval

 It limits a use of BESS until its SoC will be 

back into an acceptable range

 An optimal BESS control strategy must cover 

both:

 Application control

 State of charge control

 Consideration of a battery aging model can 

provide additional information in order to take 

pro-active measures to fulfill the lifetime 

targets
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Advanced Battery Control Strategies
Frequency Control in Microgrids

State of charge (SoC) control according to one of the 

following strategies

 Strategy 1:

 Active when SoC exceeds adjustable thresholds 

and frequency is within a regulation dead-band

 Off-set value is 0-100% *ὖ at any time step 

(preferably small values)

 Strategy 2:

 Is continuously activated and adjusts a power 

set-point using an average over the previous 

usage, i.e. ctrl signal is zero-mean

 Variable off-set value is taken from a secondary 

reserve

 Strategy 3:

 Active when SoC exceeds adjustable thresholds

 Fixed off-set value is taken via a ramp of fixed 

slope for a fixed duration from a secondary 

reserve or an intraday market
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SoC control strategy 1
Offset and SoC variations

• For Poffset = 5% of rated power, the annual capacity fading ≈ 6%

• For Poffset = 10% of rated power, the annual capacity fading ≈ 3.7%
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SoC control strategy 1
Variations of different power signals

• Offset is active when system frequency is within a deadband

• BESS follows exactly the requested ancillary service power when Δf≠0  
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SoC control strategy 2
Offset and SoC variations

• For an averaging period of 1 hour and a dispatch delay of 15 min,

the annual capacity fading ≈ 3.2%  



0 2000 4000 6000 8000 10000 12000
-4

-3

-2

-1

0

1

2

3

4
x 10

5

Time (seconds)

P
ow

e
r 

(W
)

 

 

P AS

P BESS

P Offset

SoC control strategy 2
Variations of different power signals

• Offset mechanism ‘forces’ the BESS power signal to be zero-mean

• Deviations between PAS and PBESS
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SoC control strategy 3
Offset and SoC variations

• For SoC upper threshold = 53%, SoC lower threshold = 47%, off-set level = 10% of rated power, 

ramp up/down in 5 min and min offset duration = 15 min, the annual capacity fading ≈ 3%  
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SoC control strategy 3
Variations of different power signal

• Offset active when SoC hits the thresholds

• Deviations between PAS and PBESS
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Comparison of three SoC control strategies
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Offset 1 depends on Δf → frequent threshold violations with limited control
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Preferred SoC Control Strategies
Need for an adaptive approach

 Depending on the operation mode grid-tied or off-grid we switch between 

strategies

 Based on the actual generation mix we can tune the parameters of each 

strategy

Operation 

mode
Reference Advantages

Off-grid Strategy 1
• The offset does not directly cancel 

the control signal

Grid-tied Strategy 3

• Less energy is cycled through

the offset than in strategy 2

• Less battery capacity fading



Conclusions

 Battery based energy storage plays an important role in 

microgrids with a large amount of RES

 A battery model allows to quantify capacity fading and to 

take corrective measures in case of deviations from the 

initially planned lifetime trajectory

 There are several strategies to control SoC and a preferred 

strategy depends on:

 status of the microgrid (grid-tied vs isolated)

 available options for the off-setting part (available 

generation mix, accessibility to power markets, etc.)

 Availability of forecast information (RES, load, scheduled 

islanding operation, etc.) can help to predict future SoC 

and parameterize the control system accordingly





Battery Aging Model
Stress Factors
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SoC Control Strategies
Model 1 – SoC evolution for one month
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BESS degradation after 1 year: = 3.67 %
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Model 2 – SoC evolution for one month
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BESS degradation after 1 year: = 3.22 %

Averaging period: 

1 hour

Dispatch delay: 

15 min
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SoC Control Strategies
Model 3 – SoC evolution for one month

BESS degradation after 1 year: = 3.02 %

SoC upper threshold: 

53 %

SoC lower threshold: 

47 %

Ramp duration:

5 min

Min offset time: 

15 min



References – Ancillary power system services
SP AusNet Grid Energy Storage System

Project name

SP AusNet GESS
Country

Victoria, Australia
Customer

SP AusNet
Completion date

Due to be completed in 2014

ABB solution

 Design, engineering, installation and testing of 
PowerStore-Battery, transformer and diesel generator

 Microgrid Plus System for overall system management 

 Based on transportable containerized solution

Customer benefits

 Active and reactive power support during high demand 
periods

 Transition into isolated/Off-grid operation on command or in 
emergency cases without supply interruption

 Delay of power line investments

First grid-tied microgrid with Battery Energy Storage for 

distribution network support in Australia

About the project


