Microgrid Symposium September 17, 2009 San Diego

Overview of Microgrid R&D in Japan

Akihiko Yokoyama The University of Tokyo

Concept of Advanced Power Supply Network

From 2001 to 2003

Technical Committee supported by METI

Voltage Control of a Feeder with a Large Penetration of PV Generations by Batteries From 2002 to 2007

NEDO Ohta City Project

Independent and Islanding Operation of Microgrid

From 2003 to 2008

Operation of DGs including RES as a Virtual Power Plant

From 2003 to 2008

Commercial Power System, Utility Power System

NEDO Kyoto Project

Multiple Power-Quality Electricity Supply Network

From 2003 to 2008

DVR : Dynamic Voltage Restorer

NEDO Sendai City Project

Supply and Demand Integrated Distribution System

--- Autonomous Demand Area Power System --- From 2003 to 2008

Central Research Institute of Electric Power Industry

NEDO Akagi Project by CRIEPI

Shimizu Microgrid System

Simulation Study on Islanding Operation of Microgrid with DC based DGs and AC Feeder

From 2004 to 2006

Minimization of the required capacity of Battery

Joint Project of Univ. of Tokyo and Mitsubishi

Autonomous Decentralized Control by use of AC Feeder Frequency

- The System Frequency is used for Active Power Balance Control of Fuel Cell and Battery.
- The Battery changes the frequency according to its output power and each FC detects the frequency change and decides its output.

Contribution of Microgrid to Utility Grid

Joint Project of Univ. of Tokyo and Tokyo Gas

Concept of Advanced Smarter Grid in Japan (Ubiquitous Power Grid)

Contribution of Heat Pump based Water Heater to LFC for Reduction of Battery Capacity

HP Water Heater

Coordinated Control of PHEV, EV, Battery, RES and Thermal Power Plant

Outline of Battery System R&D for Grid Integration of RES Generations

Purpose

Development of Technologies Required for Low-Cost, Long-Lifetime and Large-**Capacity Battery System for Grid Integration of RES Based Generations**

Topics and Final Targets

- (1) Technology Development for Practical Use Large-Capacity Battery System and Output Power **Control Technology ※**Final target=Field test for more than 6 months
- (2) Elemental Technology Development **Materials for High Performance** %Final target=Cost \$400/kWh, Lifetime10 years
- (3) Next Generation Technology Development New Materials and Their Production Methods, etc. **%**Final target=Feasible Cost **\$150/kWh**, Lifetime **20** years
- (4) Fundamental Research for Common Use **Assessment Methods Applied to Battery Produced in the Above Projects ※**Final target=Assessment methods for Cost, Safety, Lifetime, Performance

Use

New National Projects in Japan

From 2009 to 2014

Remote Island Microgrid Project with a Large Penetration of PV and Wind Power Generations

Simulation Study using Analog type Power System Simulator with DGs such as PV and Controllable Load