

Electrical Engineering Department School of Engineering University of Chile

The GeVi Initiative

Patricio A. Mendoza-Araya

San Diego 2009 Symposium on Microgrids September 18th, 2009

Patricio A. Mendoza-Araya

- What is the GeVi project?
- Who is working in this project?
- **How** is the project developed?
- Where and When is this going to be operative?
- Conclusions

What is the GeVi project?

- Definition:
 - GeVi = "Generador Virtual" = Virtual Power Plant (VPP)
 - VPP: Group of distributed generators (DG) operating on a common coordinated scheme

What is the GeVi project?

- Advantages
 - Coordinated operation
 - Additional services
 - Dispersed energy resources
- Questions
 - Economically feasible?
 - Technically feasible?
- Associated problems
 - Optimal allocation of generation units
 - Optimal operation
 - Ancillary services

- Differences with classic generation
 - Control and monitoring systems are costly in per power unit basis
 - Qualified personnel not available on all locations
 - Demand (local loads) is now close!
- Math tools
 - State estimator
 - OPF with security constrains
 - Real-Time coordination controllers

What is the GeVi project?

International experience

- ISET laboratories
- STEAG Project
- Encorp Virtual Power Plant
- Virtual FC Power Plant
- Fenix project (DER European Union)
- SOLID-DER
- Previous projects in Europe (CRISP, DISPOWER, MICROGRIDS, EUDEEP)
- Virtual Power Plant NATCON7
- Decentralized Energy Management System by SIEMENS
- NTT research centre, Japan (control-communication)

Who is working in GeVi project?

Initiative founders

- PhD. Rodrigo Palma B. PhD. Francisco Gracia P.E. Patricio Mendoza A. P.E. Claudio Vergara R.
- (DIE, University of Chile) (DIQ, University of Chile) (DIE, University of Chile) (University of Chile)

Sponsors

Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile Departamento de Ingeniería Eléctrica Centro de Modelamiento Matemático Instituto Milenio de Sistemas Complejos de Ingeniería

Who is working in GeVi project?

- Team background
 - Research and studies on renewable energy and energy efficiency topics (8 projects, 12 papers on journal/proceedings, 21 thesis)
 - Regulatory, statutory participation, rural electrification
 - 10 kVA micro-hydro power plant prototype
 - 1 kVAr static var compensator
 - Single-phase laboratory VPP experience
 - RF-based monitoring system
 - Simulation platform: DeepEdit
 - GeVi prototype (Jan. 2009)
 - PV MPPT (Eolian solar car)
 - "Lüfke" Electric car

- Technical challenges
 - Coordination and telecommunications
 - Quality of service
 - Cost-effective solutions
- Methodology
 - Laboratory prototype, test plant
 - Field demo experience

Vision

	-	8
	Energy harvest technology	Installed power [kW]
Solar	Photovoltaic	10
	Photovoltaic	10
	Solar thermal	10
	Solar thermal	10
	Solar thermal	10
	Geothermal (X)	10
	Wind turbine	15
	Wind turbine	15
	Wind turbine	15
	Biomass	10
	Biomass	10
Biomass		
La Titaria O 2008 Europa Technologies Image © 2009 Digital Globo O 2009 Ches/Spot Image Clave 1008 m	5 Nev. 2006 Alt cits	Google

- Prototype requirements
 - 4 different energy generation technologies
 - At least 20 DG units
 - Total installed power >= 100 kW
 - Islanding operation capability (faults)
 - Energy export capability
 - Ancillary services (congestion management, voltage and PF profile regulation, losses minimization, unbalance correction)
 - Modular scalable structure

Components

Concepts, Models, algorithms, rules, protocols, optimization.

fcfm

Software, databases, visualization tools.

Communication, control and monitoring platform.

Controllers, actuators, converters, generators, storage technologies

Sep. 18, 2009

Patricio A. Mendoza-Araya

Where and when?

• Short term

Where and when?

• Long term

Conclusions

- Community impact
 - Social benefits
 - Energy-efficient and environment-friendly education
 - Promotion of the use of local energy resources
 - Motivation to the community to be part of the technological development
 - Economical benefits
 - Community professional training
 - New job positions
 - Electricity availability, better quality of service
 - Profit from energy & local ancillary services
 - New activities related to already-existent processes

Conclusions

- Environmental impact
 - Manage loads to improve system efficiency
 - Lower greenhouse gas emissions
 - Rational use of natural resources

Thanks!

Patricio A. Mendoza-Araya pmendoza@ing.uchile.cl