

# Operation Result of the Hachinohe Microgrid Demonstration Project

Yasuhiro Kojima Advanced Technology R&D Center Mitsubishi Electric Crop., Japan



- 1.Objective
- 2.System Overview
- 3.Control Concept
- 4. Operation Results
  - 1.Interconnected operation
  - 2.Islanding operation



### MITSUBISHI 1.Objective

- Stabilization of weather-dependent energy is one of the main driving factor of Microgrid in Japan.
- Objectives of Microgrid Demonstration Project:
  - Demonstration of Microgrid system as a new way of introducing PVs, WTs, or other Renewable Energy Sources (RES).
  - Development, operation, and evaluation of Microgrid system with the ability to stabilize and control total energy including weather-dependent energy.







### MITSUBISHI 2. System overview

#### **Hachinohe Project:**

- Demand: Seven building facilities, sewage plant
  - ✓ Electricity: maximum 610kW at Hachinohe City hall, four schools and office building.
  - ✓ Heat: 10Gcal/day at Sewage plant
- Energy supply: Only RESs
  - ✓ Electricity: 510kW(170x3) biogas engines, 130kW PVs, 20kW WTs, 100kW lead-acid battery
  - ✓ Heat: 1.0t/h wood boiler and 4t/h gas boiler
- Energy management
  - √ 5.4km Private line (electricity & communication)
  - ✓ Interconnected with commercial grid at a single point.
  - ✓ Control error target: Within 3% every 6 minutes moving average

This project is jointly undertaken by Mitsubishi Research Institute, Mitsubishi Electric Corporation, and Hachinohe City with the support of the New Energy and Industrial Technology Development Organization(NEDO)



### MITSUBISHI 2. System overview





### MITSUBISHI 3. Control Concept

- To satisfy both of economical (or environmental) optimization and electric power quality,
  - ✓ Control system consists of four functions to handle enormous dimensions of the problems.
  - ✓ Implement local control system considering islanding operation.

| Object                                          | Function                                                | Abstract                                                                                                | Interval | Time unit, Period         |
|-------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|---------------------------|
| Optimization<br>(Economical &<br>Environmental) | Weekly Operation<br>Planning(WOP)                       | Calculation of the optimal fuel supply, the storage plan of electricity and heat in a week timeframe.   | 1 day    | 30-minute unit,<br>8 days |
|                                                 | Economic Dispatching<br>Control(EDC)                    | Redispatch generation based on the difference between forecasted and actual data.                       | 3min     | 3-minute unit,<br>2 hours |
| Quality<br>(Tie-line flow<br>and frequency)     | Flat Tie-Line Control<br>(Central Frequency<br>Control) | Simply central P-I control for generation is installed to reduce the fluctuation of tieline power flow. | 1sec     | -                         |
|                                                 | Local Frequency<br>Control<br>(Islanding mode)          | High-speed compensation of battery output using local frequency observation is installed.               | 10msec   | -                         |



### MITSUBISHI 3. Control Concept

 Coordination of gas engines and battery, local control and central control

|                               | Inter-connecting mode                                              | Intentional islanding mode                                                |  |
|-------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Gas Engines<br>(SYNC)         | Set-point control (40sec lag) APFR (PF=1.0~0.95)                   | Set-point with droop (2Hz/100%) AVR (and CCC)                             |  |
| Battery<br>(INV)              | Set-point control (response in<br>10 millisecond)<br>APFR (PF=1.0) | Set-point control APFR                                                    |  |
| Frequency control             |                                                                    | High speed P and Q compensation using battery                             |  |
| Phase<br>unbalance<br>control |                                                                    | Negative sequency compensation using PV PCS                               |  |
| Central<br>Control            | ·Economic Dispatching Control ·Flat Tie-line Control               | ·Economic Dispatching Control ·Frequency Control ·Phase unbalance control |  |
| Control<br>Error              | Tie-line power flow fluctuation                                    | Frequency fluctuation                                                     |  |



### MITSUBISHI 4.1 Interconnecting operation(1)

- Example of Economic Dispatching Control and Flat Tieline Control under inter-connecting operation
- Target precision:
  - Maintain six minutes moving average of tie-line power flow within 3% of scheduled value





### MITSUBISHI 4.1 Interconnecting operation (2)

- Analysis result of power quality
  - Fluctuation of weather-dependent energy and demand increases gradually over 1 minute,
  - fluctuation of control result decrease over 1minute.
  - →Our control system reduce fluctuation of weatherdependent energy effectively





#### 4.2 Islanding Operation (1)

 One-week intentional islanding operation (disconnected from the utility grid) was performed in Nov. 2007.

#### **OBJECTIVE**

- Develop microgrid EMS for island or remote area
- Confirm the control performance in more difficult conditions

#### **ASSUMED PROBLEMS**

- Frequncy Inertia of the gas engine (GE) is too small to stably maintain frequency in the case of large load fluctuation.
- Three phase unbalance
   Negative sequence current of GE caused by three phase unbalance is bigger than tolerated dose of GEG(15%)



### MITSUBISHI 4.2 Islanding Operation (2)

### **Assumed problems and actions**

|                    | Problems                                                     | Actions                                                                                                                            |  |
|--------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| Frequency          | 2.6Hz drop with 50kW AC startup with one GEG (target: 0.5Hz) | High speed (10 msec) <u>local</u><br>frequency control using<br>battery inverter                                                   |  |
| Voltage            | 6% drop with AC startup<br>(Target: 6%)                      | Local control using battery inverter                                                                                               |  |
| Phase<br>Unbalance | 10A negative sequence current (target: 2.8A)                 | <ul> <li>Phase switching reduces 5A.</li> <li>Install <u>negative sequence</u></li> <li><u>compensator using PV PCS</u></li> </ul> |  |
| Harmonics          | No problems                                                  | Install protection relay just in case                                                                                              |  |



### MITSUBISHI 4.2 Islanding Operation (3)

#### **Local control using battery inverter**





### MITSUBISHI 4.2 Islanding Operation (4)

- High speed frequency control with battery
  - Keep within 0.5Hz under largest power deviation





#### 4.2 Islanding Operation (5)

## Phase unbalance control (negative sequence current compensation)



### MITSUBISHI 4.2 Islanding Operation (6)

#### Example of phase unbalance compensation





### MITSUBISHI 4.2 Islanding Operation (7)

- Weekday (Left figure)
  - Midnight: Battery charges surplus power of GEG
  - Morning: Three GEs and battery track rapid rising
- Holiday (Right figure)
  - Noon: GE can track PV fluctuation







### MITSUBISHI 4.2 Islanding Operation (8)









#### [Frequency]

#### **Target**

 $50 \pm 0.5 Hz$ 

#### Result

 $\pm 0.5$ Hz: 100%

 $\pm 0.2$ Hz: 99.85%

Max error: -0.4Hz

#### [Voltage]

#### **Target**

 $\pm 6\%(101\pm6V)$ 

#### Result

 $\pm 6.0\%$ : 100%

 $\pm 2.0\%:99.99\%$ 

Max error: 4%

#### (Negative seq. cur.)

#### Target

within 15%

(2.8A / GE)

#### Result

15%: 100%

4%: 99.97%

#### (Harmonics)

#### **Target**

within 5%

#### Result

5.0%: 100%

3.0%: 99.99%

Max error 3.1%



### Conclusion

- We develop 4 layers energy management system for microgrid.
- Inter-connecting operation
  - Fluctuation of weather-dependent generation is effectively reduced.
  - Over 50% reduction of CO2 emission.
- Islanding operation
  - Prove ability to supply height quality power using only renewable energy sources