Test Results of a Pilot Plant for KERI Microgrid

Korea Electrotechnology Research Institute New and Renewable Energy System Research Center Jeon, Jin-Hong

- KERI Microgrid Pilot Plant
- Phase 1 Results
 - HILS Test System
 - Test Results
- Phase 2 Results
 - Test Results

KERI Microgrid Pilot Plant

Phase 1

- ▶ 2007~2008
- System Size: 50kVA
- ► 3 Sources(1 Renewable, 1 DG, 1 Storage)
- ▶ PCC Power Flow Control, Islanding

Phase 2

- ▶ 2008~2009
- System Size: 100kVA
- ▶ 5 Sources(2 Renewables, 2 DGs, 1 Storage)
- ► PCC Flow Control, Islanding, Resynch.

Phase 3

- ▶ 2009~2011
- System Size: 200kVA
- ▶ 9 Sources(5 Renewables, 2 DGs, 2 Storages)
- ▶ PCC Flow Control, Islanding, Resynch., P.Q.

Pilot Plant Phase 1

Description

Components

✓3 Sources, MMS, Loads

- ✓1 DG (20kVA D/E)
- ✓1 Renewable (20kVA PV/Wind Hybrid)
- ✓1 Storage (10kW BESS)

Operations

✓ PCC Power Flow Control in Grid-Connected Mode

✓ Transition to Islanded Mode

✓ Frequency and Voltage Control in Island Mode

• Purposes

- ✓Construction of Pilot Plant
- ✓ Basic Operation Test by Essential Elements
- \checkmark Communication and Control Scheme Test

Phase 1 Pilot Plant Structure

HILS (Hardware In-the-Loop Simulation)

"A technique used in developing and testing of complex real-time embedded systems"

A) Block diagram of embedded system connected to a hardware- in-the-loop simulator

B) Components of a simple hardware-in-the-loop simulator

Autopilot Example

www.embedded.com

Comparison of Different Approaches for MMS Performance Test

"How to test and debug the supervisory control algorithms of MMS"

	Off-Line Simulation	Real-Time HILS	Field Test	
Reliability	Up to S/W Models	High	Very High	
Necessary Equipment	S/W Tools, S/W Models (microgrid/MMS)	Real-Time Simulator, I/O interface, S/W models(microgrid), H/W component under test(MMS)	All relevant H/W components (microgrid, MMS, I/O interface, measuring devices)	
Parameter Alterations	Fully Possible	Fully Possible	Limited	
Repeatability Reproducibility	Fully Possible	Fully Possible	Limited	
Relative Develop Time	Fast	Medium	Slow	
Speed	Much Longer than Real-Time	Real-Time	Real-Time	
Development Cost	Less than HILS	Less than Field Test	High	

Requirements for MMS HILS Test

Needs for Microgrid Simulation

- Easy to Model Power System Components
- Easy to Use User Define Model for RES
- Easy to Simulate Power System
- Hard Real Time Simulator

Needs for MMS Interface

- RS232 or RS485 Interface
- Easy to Use User Define Protocols
- Easy to Use Modbus Protocols

- RTDS Interface
- ✓ Analog and Digital Interface by I/O Card
- ✓ IEC61850 Protocol by GTNET Card

Need Something for Communication Interface

Communication Emulator

Proposed HILS System

Real Time Simulation Model

Major Parameters for Simulation Model

ltem	Specification	
Test System Configuration	 No. of Sources: 3 (Hybrid, Diesel generator, BESS) No. of Loads: 2 No. of STS: 1(Static Switch) 	
Generation Capacity of Micro- sources	 Hybrid 20kW(PV 10kW, Wind 10kW) Diesel generator 20kW BESS system 10kW 	
Load1, Load2	 15kW+j9kVar Constant impedance model (R/X) 	
Transformer	•3phase 22.9/0.38kV 100kVA •Leakage impedance %Z = 6%	
Line impedance	•R= 0.1878Ω/km, X=0.0968Ω/km	

Schematic Diagram of Simulation Model

Communication Emulator

Specification

ltem	Specification	
CPU	TMS320VC33-150	
Analog Input	16 Channel, ±10V, 12bit Resolution 500kS/s, 1kHz-40dB bandwidth	
Digital Input	16 Channel, TTL	
Analog Output	12 Channel, ±10V, 12bit Resolution 1kHz-40dB bandwidth	
Digital Output	12 Channel, TTL	
Communication	RS-485 3Ports	
User Interface	Status LED 8EA, Character LCD	
Size	300mm x 210mm x 80mm	

Schematic Diagram and Prototype

HILS Test Results for Phase 1 System

Grid-Connected Mode

Island Mode

Grid-Connected Mode

Island Mode

Pilot Plant Phase 2

Description

Components

✓5 Sources, MMS, IED/STS, Loads
✓2 DGs (20kVA D/E, 50kVA D/E)
✓2 Renewables (20kVA PV/Wind Hybrid, 10kW PV)

✓1 Storage (20kW BESS)

Operations

✓ PCC Power Flow Control in Grid-Connected Mode

✓ Transition to Islanded Mode/Resynch.

- ✓ Frequency and Voltage Control in Island Mode
- ✓ Economically Optimized Dispatch
- ✓ Black Start

Purposes

- ✓ More Operation Test with More Components
- ✓ CHP Test with Simulated Thermal Load
- ✓ Performance Test of Microgrid Components

Phase 2 Pilot Plant Structure

3 Phase 380V, 100kVA Phase 2 System

Configuration of Phase 2 System

MMS for Phase 2 System

Test Cases for Phase 2 System

Case	Operation Mode	Control Mode	Control Function
Case-1-1	Inter Mode	μ-source -> P,Q cont.	Active Power
Case-1-2	Inter Wode	BESS-> P,Q cont.	Control of PCC
Case-2-1	Inter > Islandad	μ-source -> P,Q cont.	F/V Control of
Case-2-2	Inter -> Islanded	BESS-> F/V cont.	Microgrid
Case-3	Resynch	μ-source -> P,Q cont. BESS-> F/V cont.	Resynchronization

Case 1: Active Power Control of PCC in Inter. mode

Case 2: Frequency/Voltage Control in Islanded mode

Case 2: Frequency/Voltage Control in Islanded mode

Case 3: Reconnection with Utility Grid

Pilot Plant Phase 3

Description

Components

✓9 Sources, MMS, IED/STS, Loads
✓2 DGs (20kVA D/E, 50kVA D/E)
✓5 Renewables (20kVA PV/Wind Hybrid, 30kW PV, 10kW Wind, 10kW Thermo-Electric, 1kW Fuel Cell)

✓2 Storage (50kW BESS, 30kW EDLC)

Operations

✓ PCC Power Flow Control in Grid-Connected Mode

- ✓ Transition to Islanded Mode/Resynch.
- ✓ Frequency and Voltage Control in Island Mode
- ✓ Economically Optimized Dispatch
- ✓ Black Start, Power Quality Compensation

• Purposes

- ✓ Operation Test with Real-Site Load
- ✓ Demonstrate a Low Voltage Commercial Power Supply System

Phase 3 Pilot Plant Structure

3 Phase 380V, 200kVA Phase 3 System

Thank You!

Jeon, Jin-Hong (jhjeon@keri.re.kr)