

SDG&E-Beach Cities MicroGrid Project

Symposium on Microgrids September 17-18, 2009

Agenda

- 1. Project Overview
 - Objectives/Benefits
 - Project Participants
 - Equipment Deployment
 - Project Schedule
- 2. Update of activities completed to date
 - Successes
 - Challenges
 - Next Steps
- 3. Questions

Objective:

Conduct a pilot scale "proof-of-concept" test in San Diego, CA of how information-based technologies and DER may increase utility asset utilization and reliability.

Goals:

- Achieve > 15% reduction in feeder peak load through the integration of multiple, integrated DER– generation (DG), energy storage and price-driven load management
- 2. Demonstrate capability of Volt-Amps-Reactive (VAr) management -
- 3. Develop a strategy and demonstration of:
 - Information integration focused on security and system architecture.
 - Integration of advanced metering infrastructure (AMI)
 - 'Self-healing' networks through the integration of Feeder Automation System Technologies (FAST)
 - Integration of Outage/Distribution Management Systems (OMS/DMS)
 - Automated distribution control to intentionally "Island" customers

MicroGrid Project Overview: Goals & Scope

SDG&E's Microgrid project integrates a DOE component, focused on feeder applications and a CEC component, focused on customer-side applications

MicroGrid Project

DOE Portion

- \$7.2M in DOE funds contribution towards
 \$12M total project cost over 3 years
- Goal to achieve >15% reduction in feeder peak load and improve system reliability
- Perform cost/benefit analysis for full scale deployment
- Involves Integration of 5 technologies:
- 1. Distrib. Energy Res. (DER) and VAr
- 2. Feeder Automation System Technologies (FAST)
- 3. Advanced Energy Storage (AES)
- 4. OMS/DMS system
- 5. Price Driven Load Mgmt (PDLM)

CEC Portion

- Entirely CEC Funded (\$2.8M)
- Sustainable Communities MicroGrid focused on interoperability, AMI and customer DER
- Schedule to mesh with larger DOE proj.
- Involves Integration of customer based technologies:
- 1. Remote Controlled Demand Response Devices (e.g. Thermostats)
- 2. Solar panels
- 3. Battery storage
- 4. Plug-in Hybrid Electric Vehicles (PHEV's)
- 5. Grid-friendly appliances

MicroGrid Project : Roles and Responsibilities

MicroGrid Project Overview: Timeline

Project Architecture: Context Level Architecture

Project Approach: Release-Based Project

The proposed approach is to run the MicroGrid project as a release-based project.

The key components are common vision, centralized program management, single design and phased implementation.

Phase 1 Overview: Status of Activities

Task	Status	Comments
Task 1A – Develop a Project Management Plan (PMP):	Complete	The final SOPO and a project management plan have been updated
Task 1B – Site Selection : Select a demonstration site for the project	Complete	Site has been selected as Borrego
Task 1C – Analyze Advanced Energy Storage (AES) Solutions. Select appropriate types of AES devices to deploy for substation peak load shaving and support during transitions to/from islanded operation	Complete	The Use Cases for storage have been completed The RFP for storage device has been sent to the AES vendors
Task 1D – Negotiate AES Pricing and Obtain Cost: Quotes Analyze submitted price quotations, select vendor(s) and initiate purchase order(s)	Pending	The Pricing and Cost Quotes will be completed after the bids have been received.
Task 1E – Install Initial Field Hardware : Begin installing equipment to be used for subsequent phase of the project.	In Progress	Permits have been acquired. Civil & Electric engineering activities initiated Generator to be installed by September
Task 2.1 Pilot Network Analysis and Baselining :	Pending DOE approval	DOE funds have not been fully released
Task 2.2 Key Developments : Establish the functional specifications and test programs	Pending DOE approval	DOE funds have not been fully released

Microgrid-Project Location

MicroGrid Selected Project Site: Borrego Substation

Key Characteristics:

Strengths:

- No residences nearby, plenty of land
- More Existing Solar Customers
- Large Reliability Improvements Possible
- Possibility of 'Islanding' Entire Community
- Great learning environment
- Extendable to service territory

Challenges:

- Remote Area
- Challenging Communications Environment
- New Fencing Required
- Requires Accelerating schedule for Condition Based Maintenance and AMI Deployment

Borrego offers SDG&E an opportunity to be the leader in the Micro Grid area, with the possibility of being able to island an entire substation with peak load of over 10 MW.

MicroGrid Selected Project Site: Borrego Substation Circuit Diagram

- Establishing Secure Communications Network
- Development of Appropriate IT Architecture
- Customer Participation in DG and Demand Response Programs
- Coordination of Efforts Across Departments and with Subcontractors
- Regulatory and Tariff Impacts

Microgrid Project Overview "Pyramid"

Questions???

