

Overview of Microgrid R&D in Europe

Prof. Nikos Hatziargyriou,
National Technical University of Athens,
Vice-Chairman of Public Power Corporation
nh@power.ece.ntua.gr

The EU concept of "Smart Power Networks"

- "Smart" coexistence of central and decentralised generation with lower carbon generation and efficient demand/response
- ☐ Load trading and cost optimisation by means of dialog towards time-variable tariffs and variable incentives depending on present load
- ☐ Customer integration based on bidirectional communication and large flow of information

Key opportunities of"Smart Power Networks"

- □Security of supply efficient mix of centralised with decentralised operation allows the use of domestic energy resources, whilst maintaining a high level of reliability and quality of supply.
- □Climate change higher efficiency in energy transport and use of RES and cleaner Distributed Generation, incl. CHP, results in a real contribution to reduce emissions.
- □ <u>Competitiveness of European Industry</u> stimulate innovation of network and associated ICT represents a positive effect, both in the EU and worldwide.

The Vision

FP5 (1998-2002) funded research large-scale "integration" of RES+DG

Research Area: INTEGRATION DER	Number of projects	Total Budget [M€]	EC funding [M€]
Distributed Generation	8	34.29	18.99
Transmission	4	9.74	5.72
Storage	20	45.31	20.73
HT Superconductors	6	11.27	6.16
'Other'	17	29.12	15.21
TOTAL	55	129.73	66.81

MICROGRIDS Project

"Large Scale Integration of Micro-Generation to Low Voltage Grids
Contract: ENK5-CT-2002-00610

GREAT BRITAIN

- UMIST
- URENCO

PORTUGAL

- EDP
- INESC

SPAIN

• LABEIN

NETHERLANDS

• EMforce

GREECE

- NTUA
- PPC /NAMD&RESD
- GERMANOS

GERMANY

- SMA
- ISET

FRANCE

- EDF
- Ecole des Mines de Paris/ARMINES
- CENERG

http://microgrids.power.ece.ntua.gr

Budget 4.4 M€

MICROGRIDS - Milestones

- ❖ Investigation, Development and Demonstration of the operation, control, protection, safety and telecommunication infrastructure of Microgrids,
- ❖ Operation and Control concepts in both standalone and interconnected mode on Laboratory Microgrids will be demonstrated.

Microgrids Project Highlights

- Control philosophies (hierarchical vs. distributed)
- Energy management
- Device and interface response and intelligence requirements
- Quantification of reliability benefits
- Steady State and Dynamic Analysis Tools
- Laboratory Microgrids

Microgrids – Hierarchical Control

MicroGrid Central Controller (MGCC) promotes technical and economical operation, interface with loads and micro sources and DMS; provides set points or supervises LC and MC; MC and LC Controllers: interfaces to control interruptible loads and micro sources

Centralized vs.
Decentralized
Control

MultiAgent System for Microgrids

- Autonomous Local Controllers
- Distributed Intelligence
- Reduced communication needs
- Open Architecture, Plug n' Play

- FIPA organization
- Java Based Platforms
- Agent Communication Language

MAS Architecture

Agent Layered Learning Approach

Target

Perform Multiple Operations like Active Power Control, Market Participation or black start. These Operations require different types actions

Organization of Actions and Behaviors

Level	Behavior	Agents	Example
1	Single Agent	Single	Battery management
2	Multi Agent	Many	Switching Operations
3	Team	Many/All	Market Participation

Complex System Hierarchically Organized

pril 2007

Residential Feeder with DGs

Good Citizen Cost Reduction: 12.29 % 27% reduction in CO₂ emissions

Model Citizen Cost reduction: 18.66%

Highlight: Modelling and Simulation

Two battery invs + two PVs + one WT - Isolation + wind fluctuations

P,Q per phase Battery Inverter A

I per phase Battery Inverter A

Further Needs Identified

- More sophisticated control techniques and devices for Distributed Resource and Load controllers to implement
- Study of integration of several Microgrids into operation and development of the power system. Interaction with DMS.
- Need for standardization and benchmarking.
- Field trials to test control strategies on actual Microgrids
- Need for quantification of Microgrids effects on Power sysetm operation and planning
- Need for cooperation and learning from alternative, complementary approaches, under development in US, Canada and Japan

FP6 (2002-2006) funded research large-scale Integration of RES+DG

Research Area: INTEGRATION DER	Number of projects	Total Budget [M€]	EC funding [M€]
Advanced Architectures and Operation concepts	7	65.50	33.35
Transmission	2	7.07	4.95
Storage	1	5.87	5.00
HT Superconductor Devices for networks	2	7.82	3.35
Advanced Power Electronics	2	5.25	3.41
TOTAL	14	91.51	50.06

LOGOS

MORE MICROGRIDS Project

"Advanced Architectures and Control Concepts for More Microgrids

Contract: PL019864

Demonstration Sites in the MoreMICROGRIDS project:

Pilot installation: Kythnos Island, Greece

Duration	Since 2003		
Pilot profile	■ DG capacity el.	22 kWp	
	DG Technologygen	PV, battery, diesel-	
	Classification	rural, off-grid	
	Grid Operator	CRES	
Tasks	 Microgrid operation Multi master control method for improvement of available peak power and system reliability 		

Pilot installation: Residential Area ,,Mannheim-Wallstadt", Germany

Pilot installation: Bronsbergen Holiday Park, The Netherlands

	Duration	Starting August 2006	
	Pilot profile	DG capacity el.DG TechnologyClassificationGrid Operator	315 kWp PV, storage residential, 210 cottages Continuon
	Tasks	 Islanded operation, automatic isolation and reconnection Harmonic voltage distortion Energy management and lifetime optimization of storage system Black start 	

Pilot installation: Swimming Pool in Portugal

Pilot profile

- DG Technology
 Microturbine, Capstone 60
- Grid Operator EDP

Tasks

- Starting and Shutdown of the MT
- Operation in Island and Interconnected Mode and transitions.

Conclusions

- Microgrids: New paradigm for future power systems
- Distinct advantages regarding efficiency, reliability, network support, environment, economics
- Challenging technical and regulatory issues

http://microgrids.power.ece.ntua.gr