CONTENTS

I. Jeju island SG Pilot Project
II. SR Test-Bed Project
III. Outputs of SR Project
IV. Business Models
V. Future Plans
I. Jeju island SG Pilot Project

JEJU SG Pilot Projects

For the Technical Verification of SG, and Business Model Development

SG Road Map

VISION
Foundation for Low-Carbon Green Growth based on Smart Grid

PHASE
1st Phase (2013)
Field Test in JEJU

2nd Phase (~2020)
Application in Wide Area (SG City Project)

3rd Phase (~2030)
Nationwide Application

Main 5 Sectors
Smart Power Grid | Smart Place | Smart Renewable | Smart Transportation | Smart Elec. Service
I-1. Smart Power Grid

Targets
New Intelligent Power Grid Management System with “Smart” Functions based on IT technology

Benefits
Labor Cost and Time Saving, Reliability & Efficiency Improvement

Contents
- Two 154kV Substations and Feeders will be digitalized based on IEC 61850
- Fault Prediction System with Intelligent sensors
- Intelligent Distribution Management System

※ DAS installation completed on 2004

Schedule
- 1st (2010. 6~2011. 5) : Device installation
- 2nd~4th (2010. 1~ 2013. 11) : Device test, Operation and Assessment
I-2. Smart Place

Targets
Load Management by Demand Response under AMI environment

Benefits
Load Leveling, Energy Efficiency Improvement, Cutting Electric Charge

Contents
- Smart Meters / MDMS
- Integrated Metering System / Energy Portal
- Two-way Power Exchange / Other Services

※MDMS – Metering Data Management System

Schedule
- 3rd (2011.6~2012.5): Field Test
- 4th (2012.6~2013.5): Conclusion
I-3. Smart Renewable

Targets
Stabilization of unstable power from renewable energy sources

Benefits
DGs’ stable interconnection with Network

Contents
- 4 Types of System Configurations
- 3 Types of Power Stabilization Mode, including control Algorithm

Schedule
- 1st (2009.12~2010.5): Designing
- 2nd (2010.6~2011.5): Device Production
- 3rd (2011.6~2012.5): Field Test
- 4th (2012.6~2013.5): Conclusion
I-4. Smart Transportation

Targets
Preparation for EVs Charging Infrastructure

Benefits
Contribution for EV’s fast spread, Power Sales Increment

Contents
- Various charging stands by case
 - Quick, Slow, Inductive, High Capacity Storage
- Operation System for Charging Station / Information Security / Other services
- Standardization of Charging Interface

Schedule
- 1st (2009.12~2010.5): Designing
- 3rd (2011.6~2012.5): EV operation & Test
- 4th (2012.6~2013.5): Assessment

* CIM : Customer Information Management
I-5. Smart Electric Service

Targets
Support of Power Trade on RTP market, and integrated Operation Center

Benefits
Business platform Development in the future

Contents
- Virtual Power Market Operation System (EMS)
- Real-time Tariff Test,
- Energy Information Portal

Schedule
- 1st(2009.12~2010.5): Designing
- 2nd(2010.6~2011.5): Installation & Pilot test
- 3rd~4th(2011.6~2013.5): Integrated Field Test, Assessment
II. SR Test-Bed Project

Road Map

1st (2009.12~2010.5)
- Designing
 - Developing Lithium Battery
 - Constructing Power Resources

2nd (2010.6~2011.5)
- Devices Production
 - Drawing up Test scenario and manual

3rd (2011.6~2012.5)
- Field Test
 - Constructing Test Bed

4th (2012.6~2013.5)
- Analysis & Commercialization
 - Starting Power Exchange
II. SR Test-Bed Project

Sky View of SR Test Bed
II. SR Test-Bed Project

Test-Bed Outline

Group A
- Wind (750kW)
- PC (500kW)
- Li-BES (250kWh)
- STATCO (1MVAR)
- 220/380V
- Low Voltage Grid

Group B
- Wind (660kW)
- PC (800kW)
- Li-BES (200kWh)
- STATCO (1MVAR)
- 22.9kV-y
- High Voltage Grid

Group C
- Small Hydro (60kW)
- PV (100kW)
- Lead-Acid Battery (60kWh)
- PCS (100kW)
- PCS (100kW) w/ BMS
- PCS (500kW)
- AV (50kVAR)

Operation Center
- EM (Group)
- EM (Group)
- EM (Group)
- DRIM
- Security System

Total Operation Center

Power Line
- Blue: Data Control
- Green: DRIM Terminal
II. SR Test-Bed Project

- EMS [Energy Management System]
- PCS [Power Conditioning System]
- AVC: Automatic Var Compensator
- BMS [Battery Management System]
- STATCOM [STATic synchronous COMpensator]
Energy Storage

<table>
<thead>
<tr>
<th>Power</th>
<th>Capacity</th>
<th>Developer</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind 660kW</td>
<td>Li 250kWh</td>
<td>LG Chem</td>
<td>45Wh/cell (energy density)</td>
</tr>
<tr>
<td>Wind 750kW</td>
<td>Li 200kWh</td>
<td>SAMSUNG SDI</td>
<td>50Ah (cell capacitor)</td>
</tr>
<tr>
<td>PV VRLA 60 kWh</td>
<td>ATLAS BX</td>
<td></td>
<td>7.5 years (life time)</td>
</tr>
<tr>
<td>Small Wind</td>
<td>Li 72 kWh</td>
<td>KOCAM</td>
<td>2,500times (life time)</td>
</tr>
</tbody>
</table>

- Valve Regulated Lead Acid

Power Conditioning System

<table>
<thead>
<tr>
<th>Power</th>
<th>Capacity</th>
<th>Developer</th>
<th>Conversion Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind 660kW</td>
<td>500kW</td>
<td>LSIS</td>
<td>95%</td>
</tr>
<tr>
<td>Wind 750kW</td>
<td>800kW</td>
<td>HYOSUNG</td>
<td>95%</td>
</tr>
<tr>
<td>PV 100kW</td>
<td>Intech FA</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Small Wind</td>
<td>100kW</td>
<td>EN Technology</td>
<td>93%</td>
</tr>
</tbody>
</table>
III. Output of SR Project

PQ Compensator

STATCOM (STATic synchronous COMpensator)

<table>
<thead>
<tr>
<th>Power</th>
<th>Capacity</th>
<th>Developer</th>
<th>Reaction time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td>660kW</td>
<td>1MVAR</td>
<td>LSIS</td>
</tr>
<tr>
<td></td>
<td>750kW</td>
<td>1MVAR</td>
<td>HYOSUNG</td>
</tr>
</tbody>
</table>

Distributed Resource Interconnection Management System (DRIMS)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Developer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main, Terminal</td>
<td>KEPCO, KDN</td>
</tr>
</tbody>
</table>

[STATCOM Producting]

[DRIMS screen view]
III. Output of SR Project

Power Exchange

- **Energy Management System (EMS)**

<table>
<thead>
<tr>
<th>Power</th>
<th>Controlling Point</th>
<th>Developer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>660kW</td>
<td>20,000</td>
<td>LSIS</td>
</tr>
<tr>
<td>750kW</td>
<td>5,000</td>
<td>HYOSUNG</td>
</tr>
<tr>
<td>PV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Wind</td>
<td>1,000</td>
<td>KDN</td>
</tr>
</tbody>
</table>

Wind Power Forcasting System

<table>
<thead>
<tr>
<th>Function</th>
<th>Developer</th>
<th>Accuracy</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short & Super Short term</td>
<td>KEPCO-E&C</td>
<td>85%</td>
<td>ARIMA statistic model</td>
</tr>
<tr>
<td>Forcasting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short term (2.5h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long term (3.8h)</td>
<td></td>
<td>80%</td>
<td>Meteorological model</td>
</tr>
</tbody>
</table>

[Monitoring] [screen view]
IV. Business Models

Business Model

- Cost Reduction: Connection cost reduction between SR power and grid.
- Increasing Profit: Increasing SR power efficiency and profit.
- Energy Shift: Stores energy in low load time, and discharges in peak time by using large capacity storage.
- Intentional Islanding: Supplies power to customers in isolated grid.
Adding quality compensation equipment → Stabilizing SR power
Setting up connection capacity regulation to common line
(under 3MW → over 3MW)
Power-factor of wind power alone: 0.4~0.9

Power-factor improvement by STATCOM → Increasing active power and profit
(STATCOM: STATic synchronous COMPensator)

As is

To be

22.9KV grid

Economic feasibility of STATCOM and SR power profit in Jeju Project
Charging in low load time, Discharging in peak by ESS → Energy Shift
※ ESS : Energy Storage System

Demand controlled application and UPS (uninterruptible power supply)

Point at Issue

Expensive Battery → Technical development

RPS expectional item : ESS → Support by Goverment policy
※ RPS : Renewable Portfolio Standard
IV. Business Models

Intentional Islanding

Outline

- KEPCO Parallel Operation
- Stand alone Operation
- KEPCO low voltage line
- SW
- Energy Storage
- Load
- Wind
- PV
- Small Hydro
- Load

Functions

- **Ordinary**: Minimize consumption of power from Grid, Renewable energy sources service electricity for the area
- **Grid black out**: Island Grid can supply enough power for the area without black out
- **After recovery**: Automatically close switch and re-connect with Grid
IV. Business Models

Intentional Islanding

Domestic Market

- Substitution for diesel power in island region
 - case: Denmark Samso island

Overseas Market

- Supply power to customer in isolated region without grid connection
 - target
 - Area where enough electricity is not available
 - Area where Extremely high Power Quality is necessary
IV. Future Plan

- SR Equipment Development
 - 2011: Test being linked
 - 2012: Standard & Patent
 - 2013. 5: Equipment Upgrade

- SR Demonstration
 - 2011: Demonstration Scenario
 - 2012: Short Term Demonstration
 - 2013. 5: Long Term Demonstration

- SR Biz Model
 - 2011: BM Evaluation
 - 2012: Analysis & Commercialization
Smart Renewable

Lee, Jong Hwan
General Manager
Distribution Construction Dept. KEPCO
E-mail: leejohw@kepco.co.kr