Intelligent Microgrid Project Research in Spain and Denmark

by

Prof. Josep Guerrero

Aalborg University
Institute of Energy Technology
joz@et.aau.dk
http://www.iet.aau.dk
Outline

1. Aalborg University Research
2. Microgrid control research
3. Microgrid site in Spain
PV Systems - Main facilities

- **Grid Converters** – up to 5A/400V, single-phase or three-phase with flexible digital control: dSpace DS1103 or TMS320F2812 and F28335 eZdsp Development board

- **PV inverter test setup** (includes 32kW Dynamic PV simulator, 4.5-kW Dynamic Grid Simulator, 3-kW Electronic AC Load, Anti-islanding Test Setup)

- **Residential Micro-Grid setup** (includes 1.9-kW Polycrystalline silicone solar panel array, 1.5-kW Danfoss Solar inverter and 1.7-kW SMA Sunny Boy PV inverters, SMA Sunny island inverter, VRB-ESS 5-kW – 4h Flow battery, as well as California Instruments 3kW programmable AC load)

- **PV-E PVPM 1000C - 1000V/20A photovoltaic I-V curve tracer** – for panel/string characterisation

- **Flashing Solar Simulator Mencke & Tegtmeyer - 240V/16A** – for indoor characterisation of PV panels

- **California Instruments Grid Simulator** – for fault simulations

- **High bandwidth Regatron PV Simulator** (includes TopCon Quadro Power Supply Module, TC.LIN Linear Post-Processing Unit, and SASControl PC Software). Output ratings: 32 kW, 1000VDC, 40A
Parallel DC/AC converter systems

AC/DC/Hybrid Microgrid systems
PV Systems - Main activities

Advanced Control for Grid Converters

- **Control structures** – development of the control structures in different reference frames such as natural abc, stationary qβ or synchronously rotating dq for better matching the application.

- **Current controllers** – different linear (PI, resonant) and nonlinear (hysteretic, predictive) controllers.

- **Grid synchronization** – phase-locked loop (PLL) based strategies.

- **Grid monitoring** – accurate detection of grid voltage magnitude, frequency and phase angle for fast grid fault detection. On-line grid impedance estimation.

- **Ancillary services** – voltage support, frequency control, reactive power compensation, UPS, active filtering, etc. can be implemented in software.

- **Control under grid fault** – symmetrical currents can be injected during unsymmetrical grid faults.
PV Systems - Main activities

Software Anti-Islanding of PV Inverters

- Advanced grid voltage and frequency monitoring for passive anti-islanding detection
- Active anti-islanding methods based on:
 - Harmonic injection
 - P,Q variations
 - Phase modulation
Integrated multi-function DC/DC converter for PV generation and energy storage for micro grids

- Hardware design of:
 - interleaved DC/DC converter topology for battery management
 - DC/DC converter for photovoltaic array
 - Integrated into a single 3-phase bridge

Energy management for DC coupled micro grids
PV Systems - Main activities

Control of Grid Interactive PV Inverters

- Development of new functions for grid-connected PV inverters to increase their penetration level
- Improve LV network power quality by PV inverters (harmonics, fluctuations, unbalance)
- Contribution to new LV grid standards regarding PV integration
PV Systems - Main activities

Advanced MPPT and Diagnostics

- **Improved MPPT** optimized for faster tracking and higher tracking efficiency in cloudy, rapidly changing conditions, typical to northern Europe

- **Intelligent MPPT** with detection of slow partial shading caused by fixed obstacles

- **On-line characterization and performance monitoring** of PV panels by series and shunt resistance estimation, detection of partial shadows caused by dirt or reduction of the transparency of the covering layers as well as rated power estimation

- **Model parameter extraction** (Rs, Rp, diode quality factor) from data-sheet

- **Cell/connection failures detection**
Intelligent Microgrid Project Research in Spain & Denmark

JEJU 2011 Symposium on Microgrids

Josep M. Guerrero joz@et.aau.dk

Aalborg University Microgrid Research

Green Residential Micro Grid – Main Components

5kW – 4h, 28V Flow-Battery + Island-Grid Inverter
Can switch to the grid for selling electric energy, or buying if there is not enough generation

1.9 kW Solar Array + PV Inverter

1.5 kW Wind Turbine + WindyBoy Inverter

House 3kW Electronic AC load
Green Residential Micro Grid – Flow Battery

Flow Battery 5kW-4h
- no maintenance
- 10,000+ deep cycles
- high efficiency
- full response over temp
- nominal charging current
- x2 overloading
- ca. 300 USD/kWh

<table>
<thead>
<tr>
<th>VRB-ESS</th>
<th>Lead Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Output</td>
<td>5kW (112A) x 4 hours</td>
</tr>
<tr>
<td>Output Voltage Range (VDC)</td>
<td>42-56</td>
</tr>
<tr>
<td>Approx. Dimensions (W x D x H, in.)</td>
<td>34 x 86 x 80</td>
</tr>
<tr>
<td>Approx. Weight (Full, lbs.)</td>
<td>7,000</td>
</tr>
<tr>
<td>Thermal (Stg/Opq: °F)</td>
<td>32-100/32-100</td>
</tr>
<tr>
<td>Approx. DC-DC Efficiency, round trip</td>
<td>75%</td>
</tr>
<tr>
<td>Performance vs. Temp.</td>
<td>Flat response over temp, range</td>
</tr>
<tr>
<td>Containment</td>
<td>Double containment of electrolyte storage</td>
</tr>
<tr>
<td>Lifetime (discharge cycles)</td>
<td>10,000+</td>
</tr>
<tr>
<td>Depth of Discharge</td>
<td>From full to 20% state of change</td>
</tr>
<tr>
<td>Recharge Time</td>
<td>4 hours (optional 1:1 charge/discharge ratio)</td>
</tr>
<tr>
<td>Speed of response</td>
<td>1 ms</td>
</tr>
<tr>
<td>Overload capability</td>
<td>2x nominal rating</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Annual inspection if desired</td>
</tr>
</tbody>
</table>

** Deep discharges reduce life exponentially

![Flow Battery Image]

JEJU 2011 Symposium on Microgrids Josep M. Guerrero joz@et.aau.dk
Aalborg University Microgrid Research

Green Residential Micro Grid – System Configuration

Key
- AC Power
- DC Power
- Comms

Internet
- Sunny Webbox
- Sunny Island SI5048
- Sunny Boy SB1700
- Windy Boy WB1700

VRB-ESS V5E

DC Link
Utility Grid

Load 0-3kW

Micro Grid

JEJU 2011 Symposium on Microgrids
Josep M. Guerrero
joz@et.aau.dk
Aalborg University Microgrid Research

Green Residential Micro Grid – Laboratory view

Sunny Island SI 5048

Sunny Boy SB 1700

Windy Boy WB 1700

WebBox

Net Logger
Green Residential Micro Grid – On-line monitoring

Monitoring of:

- generated wind power
- generated solar (PV) power
- total power fed into utility network
- wind speed
- ambient and PV cell temperature
- solar irradiation
- sampling up to 1Hz
Outline

1. Aalborg University Research
2. Microgrid control research
3. Microgrid site in Spain
Microgrid Control Research
Hierarchical Control

- **Primary controls** the droop control used to share load between converters.
- **Secondary control** is responsible for removing any steady-state error introduced by the droop control.
- **Tertiary control** concerning more global responsibilities decides the import or export of energy for the microgrid.
Microgrid Control Research

Hierarchical Control

- Droop control of AC systems

Active power: \(P = \frac{VE}{X} \sin \phi \)

Reactive power: \(Q = \frac{EV \cos \phi - V^2}{X} \)

Droop control of AC systems

\[
\begin{align*}
E_1 \angle \phi_1 & \quad X_1 \quad V \angle \delta \quad X_2 \quad E_2 \angle \phi_2 \\
DG \text{ Inverter 1} & \quad \text{Load} \quad DG \text{ Inverter 2}
\end{align*}
\]
Microgrid Control Research

Hierarchical Control

Islanded operation

- Voltage and frequency management
 The system acts like a voltage source, controlling power flow through voltage and frequency control loops adjusted and regulated as reference within acceptable limits.

- Supply and demand balancing
 In grid-connected mode, the frequency of the DG units is fixed by the grid. Changing the setting frequency, new active power set points that will change the power angle between the main grid and the microgrid can be obtained.

- Power quality
 The power quality can be established in two levels:
 1) Q compensation and harmonic current sharing inside the microgrid
 2) Q and harmonic compensation at the PCC -> MG can support the power quality of the main grid.
Microgrid Control Research

Hierarchical Control

Droop control

\[\omega = \omega - m(P - P^*) \]

\[E = E^* - n(Q - Q^*) \]

Transformations and Power Calculation

\[V_o = E \sin(\omega \cdot t - \phi) \]

\[V_o^* = E^* \sin(\omega \cdot t - \phi) \]
Virtual Impedance

- Multiloop control droop strategy with the virtual output impedance
Microgrid Control Research
Hierarchical Control

- Virtual output impedance loop

\[v_o^* = v_{ref} - Z_D(s) \cdot i_o \]

- Objective: fix the output impedance
Virtual Impedance

Soft-start operation of the inverter

\[I_p \approx \frac{E}{\omega L_D} + \Delta \phi \]

Initial PLL error

Output impedance

\[S = P + jQ \]

\[Z_\theta \]

\[V \angle 0^\circ \]

\[L_D^* = L_{D_f}^* + (L_{D_o}^* - L_{D_f}^*) \cdot e^{-t/T_{ST}} \]
Microgrid Control Research

Hierarchical Control

- Virtual output impedance loop

Harmonic current sharing

\[H_i(s) = \frac{2k_i s}{s^2 + 2k_i s + \omega_i^2} \]
Microgrid Control Research

Hierarchical Control

- Reactive power control of the microgrid. Low voltage ride-through.

Trade-off during voltage dips: 1) voltage follower (Q=0) 2) stiff voltage source (Q high)
Low voltage ride-through

- Reactive power control of a grid-connected DG.

During the voltage grid, the converter injects reactive current (90°)
Microgrid Control Research

Hierarchical Control

Secondary control action

Primary control ensures P sharing by drooping the frequency

Secondary control:
- Restore the nominal frequency
- Cannot work locally, it needs to be centralized.
Microgrid Control Research

Hierarchical Control

- Primary and secondary control based on hierarchical management strategy

Secondary control features:
- Frequency/Amplitude Restoration
- PCC Power Quality improvement (Voltage Harmonics & Unbalances)
- Distributed Synchronization
Microgrid Control Research

Hierarchical Control

Tertiary control for AC microgrids

- The tertiary control generates the frequency and amplitude references for the secondary control.
- The control expressions supose an highly inductive impedance on the grid side.
- Park transformation can be used for a general impedance case.

In grid connected mode

P and Q from the MG to the grid can be controlled by tertiary control.

In islanded mode

Secondary control fixes frequency and amplitude of the MG.
Microgrid Control Research
Hierarchical Control

Islanding detection

- Non-planning
- Islanding
- Frequency deviation
- Islanding detection
- STS open (protection)
- Q integrators
- Disconnected
Microgrid Control Research

Hierarchical Control

Hybrid AC/DC microgrid

- Energy Storage
- Generator
- PV
- Wind Turbine
- AC Loads
- Unity Grid
- DC/AC
- DC/DC
- PV
- Energy Storage
- DC Loads
- Wind Turbine
- AC/DC
- DC/AC
- DC/DC
- AC/DC/AC

AC Bus

DC Bus
Microgrid Control Research

Hierarchical Control

Hybrid AC/DC microgrid

- DC Voltage Secondary Controller
- PI
- To Rectifier II

Primary Control Level

- DC Droop Controller
- PI

Current Ref Generator
- i_{al}
- i_{pl}
- $\cos\theta$
- $\sin\theta$

AC Current Controller
- $\alpha\beta$ - abc

PWM Generator

Simulation Points
- Experiments Points
- $u_{dc}=R_{dc}i_{dc}$
- $u_{dc}=R_{dc}i_{dc}$
- $u_{dc}+u_{dc}R_{dc}i_{dc}$
- $u_{dc}=5u_{dc}R_{dc}i_{dc}$
- $u_{dc}=5u_{dc}R_{dc}i_{dc}$
Microgrid Control Research
Hierarchical Control

Hybrid AC/DC microgrid

Control System
Based on dSPACE1103

Droop Control
\[\Delta u_{dc} = 5V \]

Secondary Control
\[\Delta u_{dc} = 8.5V \]
Microgrid Control Research
Hierarchical Control

Microgrid clusters

Stiff grid
Tertiary SG
Secondary SG
Primary SG/Tertiary Cluster
Secondary Cluster
Primary Cluster
Tertiary Secondary
DG#1 Primary
MG#1 Primary
DG#2 Primary
DG#3 Primary
DG#4 Primary

> PCC#1
Cluster I
> PCC#2
Cluster II

Josep M. Guerrero
joz@et.aau.dk
Outline

1. Aalborg University Research
2. Microgrid control research
3. Microgrid site in Spain
Microgrid site in Spain

350 kW Microgrid site

Microgrid site 350 kW

- PV (2x10kW)
- WT (2x20kW)
- Fuelcells (4x1.25kW)
- Diesel generator (150kW)
- Cogeneration unit
 - 100kW thermal
 - 50kW electrical
- Supercapacitors (2x500kJ)
- Flywheels
 - (2MJ: 10kW@20sec)
- Li-ion batteries
 - (100kW@20 min)

Horizontal and vertical axis wind turbines
Microgrid site in Spain
350 kW Microgrid site

Microgrid site 350 kW
- PV (2x10kW)
- WT (2x20kW)
- Fuelcells (4x1.25kW)
- Diesel generator (150kW)
- Cogeneration unit
 100kW thermal
 50kW electrical
- Supercapacitors (2x500kJ)
- Flywheels
 (2MJ: 10kW@20sec)
- Li-ion batteries
 (100kW@20 min)
Microgrid site in Spain
350 kW Microgrid site

Microgrid (Source JEMA)

JEJU 2011 Symposium on Microgrids
Josep M. Guerrero
joz@et.aau.dk
Summary iMG-RP in Spain & Denmark

- Aalborg University is developing research on the hierarchical control is required for a AC/DC microgrid:
 - Primary control is based on the droop method allowing the connection of different AC sources without any intercommunication.
 - Secondary control avoids the voltage and frequency deviation produced by the primary control. Only low bandwidth communications are needed to perform this control level. A synchronization loop can be add in this level to transfer from islanding to grid connected modes.
 - Tertiary control allows to import/export active and reactive power to the grid.
 - Cooperative control for Power Quality Issues: primary and secondary control for Voltage Unbalance and Harmonic Compensation
- Spain will host a Microgrid to implement and test hierarchical control for dispersed energy resources, energy storage systems, and distributed loads.