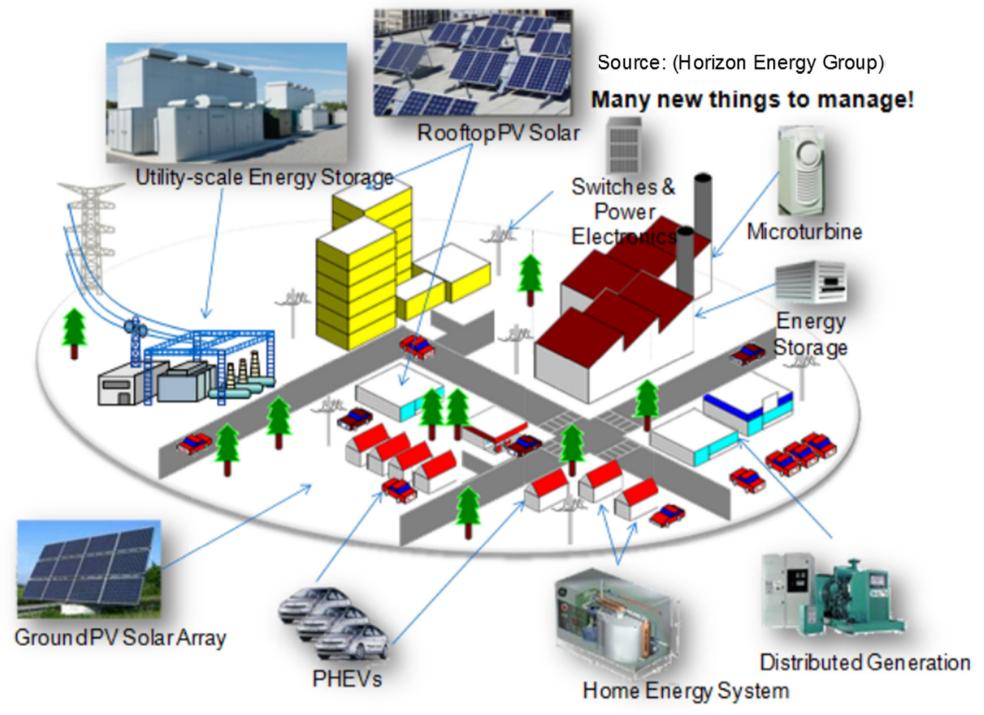


Sustainable Energy Systems

Assessment of Multi-building Microgrids' Potential in the Portuguese Urban Context

Paulo Ferrão, Michael Stadler, Chris Marnay, Christos Ioakimidis

Gonçalo Mendes


PhD Candidate Instituto Superior Técnico

Contacts

goncalo.p.mendes@ist.utl.pt +351 21 040 70 28 (Ext: 5228)

Research team Paulo Ferrão - IST/U.Técnica Lisboa Michael Stadler - Berkeley Lab Chris Marnay - Berkeley Lab/U.California Christos Ioakimidis - DeustoTech/U.Deusto

INSTITUTO SUPERIOR TÉCNICO

We look at microgrids as alternative forms of energy distribution for Portugal, able to better realize the potential of distributed, cleaner and localized supply of heat and power in **urban building complexes**. The concept we adopt aggregates dispatchable as well as intermittent electricity and heat generation, along with storage, operating in a coordinated and grid-connected fashion, being capable of isolated operation, trough a PCC, if required.

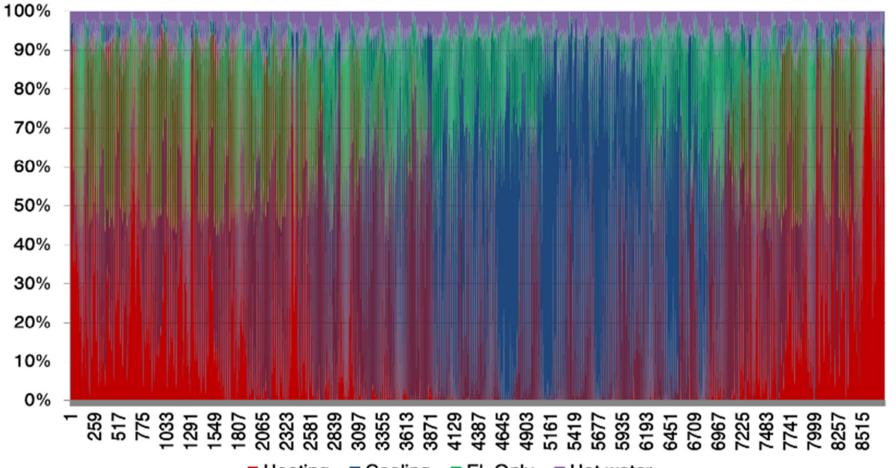
Main PhD work objectives

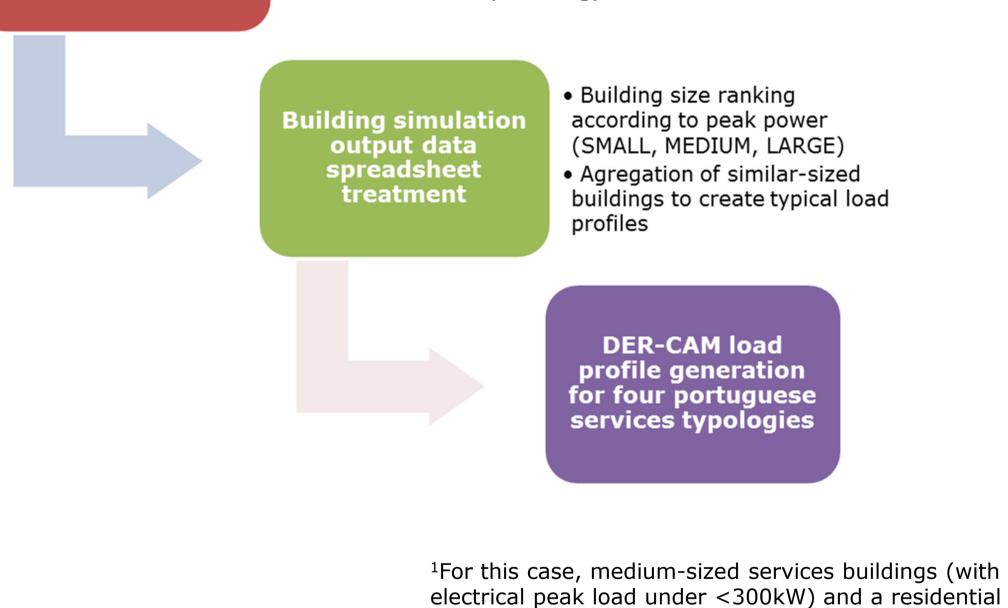
1. To develop a reliable optimization methodology able to address economically and environmentally the design of multi-building, multi-typology integrated microgrid systems 2. To identify **deployment pathways** for the development of the microgrid solution trough the identification of preferential adoption patterns for the Portuguese urban context

Methodology

Results

We are developing a database of Portuguese load data for services buildings and residential households, gathered from Portuguese energy services companies. The goal is to define typical loads for each typology in order to explore its microgrid adoption patterns.

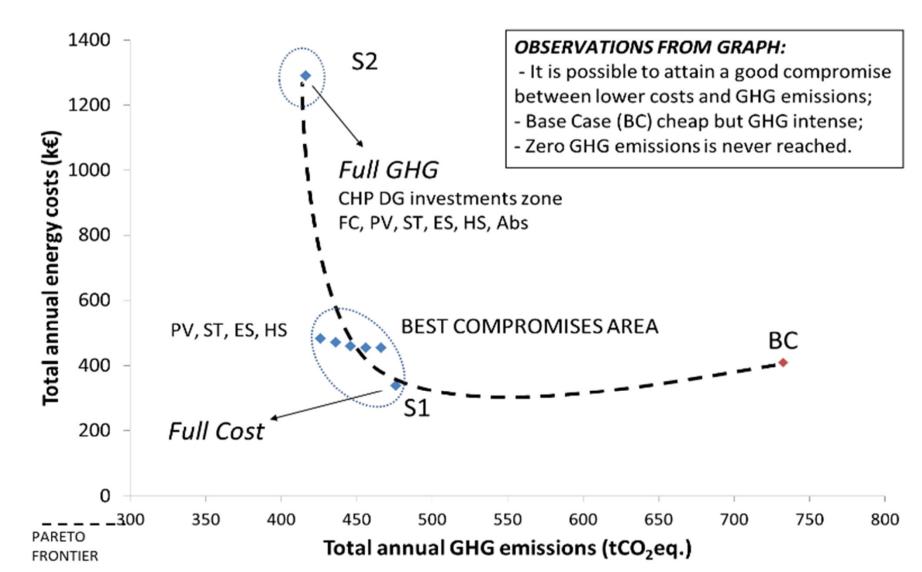

Building simulation tool (Visual DOE 4.0) TRY hourly reports (for each building)


 Heating and cooling loads • Equipment, lighting, ventilation and pumping loads Hot water and NG loads • Electric total load (for sizing)

Optimization modeling with DER-CAM

GHG emissions Cost f_1 and t_2 minimizing adoption microgrid ÍS with the performed multiobjective optimization tool DER-CAM, extended to the Portuguese market context and expanded to support **multi-building** typologies modeling capabilities.

Schematics of a microgrid system, involving both intermittent and dispatchable generation and PEV's integration as mobile storage.



 $f_1(x), f_2(x): A \to \mathfrak{R}$ $\min f_1(x) \mid x \in D \quad s.t.$ $g_i(x) = 0 \mid i = 1..k$, $h_i(x) \le 0 \mid j = 1..m$ $f_2(x) \le \mathcal{E}_n \mid n = 1..h$

energy analysis includes five The different typologies building of complexes¹: **Residential**, **Lodging**, Educational, Health and Office.

Heating Cooling El. Only Hot wate

Total energy consumption percent distribution for a typical Portuguese education building complex, over a typical year.

Example multiobjective Pareto frontier for the investment case in microgrid adoption for the RES+EDUC case.

²For each case, the upper area shows the Base Case run total annual energy cost (TEC) and GHG emissions. The lower area refers to the minimize cost run (minCost), with indication of the percent change in relation to the initial setting.

neighborhood with 200 households.

Result Matrix², 28 DER-CAM runs

Overall improvements. All typologies benefit from switching to the microgrid configuration, whether in economic (avg. 20% reduction) or in environmental terms (avg. 30% reduction). Best relative cost reductions achieved with typologies that most value reliability, HLTH and OFF. Best GHG HLTH emissions reduction with typology, due to high electricity-only needs. Overall relatively low heating loads have prevented great investments in CHP. High trend for adoption of solar enabled technologies, both thermal and electric. Scale economies. Joint adoptions (examples: RES+EDUC) result in greater reduction in total energy costs. **Load complementarity**. The aggregation complementary loads (example: of RES+OFF) is economically beneficial.

	RES		LODG		EDUC		HLTH		OFF	
		8689	BC	396252	BC	409376	BC	440002	BC	491636
RES	19	95344		704888		732474		775016		821451
	<u>minCos</u> t	-7%	minCost	-15%	minCost	-18%	minCost	-19%	minCost	-20%
	138	8727		335023		337556		355935		391028
		-24%		-33%		-35%		-36%		-30%
	14	19012		470946		476086		493558		572476
			BC	277999	BC	622173	BC	601158	BC	652169
LODG				509544		1116802		1089217		1135652
			minCost	-19%	minCost	-20%	minCost	-22%	minCost	-21%
				225528		500474		469959		512823
				-34%		-32%		-41%		-30%
				335690		764013		637243		791364
EDUC					BC	292698 537130		617149 748022	BC	666498 1163237
					minCost	-20%	minCost	-23%	minCost	-22%
						234365		474116		521203
						-34%		-20%		-30%
						355818		601530		810476
HLTH							BC	323505	BC	698166
								579672		1205780
							minCost	-24%	minCost	-24%
								246347		534074
								-43%		-44%
								328829		677508
OFF									BC	370267
										626108
									minCost	-23%
										283796
										-27%
										454731

Some conclusions:

- 1. Microgrids can play an important role in a forthcoming distributed energy future in Portugal.
- 2. There are prospective economic and environmental improvements in adopting the microgrid concept, especially for urban multi-typology complexes.

- 3. Load complementarity is revealed a significant aspect in microgrids design.
- 4. Microgrids might become exceptionally attractive to HLTH and OFF complexes.
- 5. The Portuguese technical-economical context added to the climatic conditions currently favors investments in solar energy technologies, namely PV and ST. 6. CHP and absorption cooling can play an important role if PV area is constrained. 7. Average TEC with reforming a standard building complex³ comes around $400k\in$.

³Applicable to the case-study conditions and medium-sized service buildings.

In collaboration with:

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR