Distributed Generation & Microgrids: Is There a Limit to Decentralization?

Johan Driesen
K.U.Leuven – ESAT/ELECTA
http://www.esat.kuleuven.be/electa
Traditional low voltage grid

- Limited number of loads
- Energy supplied top-down from central power station

- Increased loading
- Increased distortion: due to non-linear (power electronic) and sensitive loads power quality problems arise
Evolution in electrical energy

• **3 technological drivers**
 ▪ Power electronics (PE) becomes ubiquitous in loads, generators and grids
 ▪ More power produced (and stored) near consumers: Distributed Energy Resources (DER)
 ▪ Increased importance of Power Quality (PQ): more disturbances and more sensitive devices

• **3 socio-economic tendencies**
 ▪ Liberalization of energy markets
 ▪ More sustainable energy (renewable and ‘high-quality’)
 ▪ Non-guaranteed security of supply
DER technologies

- Distributed Generation:
 - Reciprocating engines
 - Gas turbines
 - Micro-turbines
 - Fuel cells
 - Photovoltaic panels
 - Wind turbines
 - CHP configuration

- Energy Storage
 - Batteries
 - Flywheels
 - Supercapacitors
 - Rev. fuel cells
 - Superconducting coils

Power electronic dominated grids

Source: KEMA
Grid of tomorrow?

- Local generation
- Local storage
- Controllable loads
- Power quality and reliability is a big issue

- System’s future size?
 - Growth:
 - Consumption rises annually 2-3%
 - Investments in production: very uncertain
 - What is accepted? What is possible in regulatory framework?
 - Short-term: make balance by introducing DG?
 - Long-term: more storage and/or ‘activate loads’?
Microgrid?

• Grids may even separate from central supply
 ▪ No net power exchange: total autonomy
 ▪ Important aspect, characterizing a Microgrid
 ○ “Ancillary Services” are all delivered internally
 ▪ Balancing the active and reactive power
 ▪ Stabilizing the grid: frequency, voltage
 ▪ Providing quality and reliability: unbalance, harmonics, ...

• Is a Microgrid new?
 ▪ It all started that way, before interconnection
 ▪ In fact, no: the grid behind certain UPS systems are driven like a microgrid with one generator
How much local sources can a distribution grid accept?

• Distribution grid was never built for local power injection, only top-down power delivery

• Electrical power balance, anytime, in any grid:
 \[\text{Electricity produced} - \text{system losses} = \text{electricity consumed} - \text{storage} \]

• Barriers to overcome:
 - Power quality & reliability
 - Control, or the lack of
 - Safety
 - Societal issues
 - Economic aspects
• Problem:
 - Bidirectional power flows
 - Distorted voltage profile
 - Vanishing stabilizing inertia
 - More harmonic distortion
 - More unbalance

• Technological solution:
 - Power electronics may be configured to enhance PQ
 - DG units can be used as backup supply
Example: MV cable grid

Substation connecting to HV-grid

Location: Leuven-Haasrode, Brabanthal + SME-zone
Impact of wind turbine
• Problem:
 - Generators are NOT dispatched in principle
 - Weather-driven (many renewables)
 - Heat-demand driven (CHP)
 - Stabilising and balancing in cable-dominated distribution grids is not as easy as in HV grids

active power ↔ **frequency**

reactive power ↔ **voltage**
Networked system operations

- **Solutions:**
 - Higher level of control required to coordinate balancing, grid parameters?
 - Advanced control technologies

- **Future technologies, under investigation**
 - Distributed stability control
 - Contribution of power electronic front-ends (see example)
 - Market-based control
 - Scheduling local load and production, by setting up a micro-exchange (see example)
 - Management of power quality
 - Customize quality and reliability level
 - Alternative networks
 - E.g. stick to 50/60 Hz frequency? Go DC (again)?

- Rely heavily on intensified communication: interdependency
Example: fully decentralized control

- Standard method: “droop control”
- KUL method: Virtual Impedance method
 - Emulate a voltage source with internal tunable impedance in the time domain
 - Ref.: K.De Brabandere et al. @ PESC’04
- Advantage: seamless transition from grid-connected to island and reconnect

![Diagram showing control system components and interactions](image.png)
Experimental results: connection of two independent grids (islands)

voltage before

current before

voltage after

current after
Example: tertiary control on local market

- DG units locally share loads dynamically based on marginal cost functions, cleared on market.
Safety

• Problem:
 ▪ Power system is designed for top-down power flow
 ▪ Local source contributes to the short-circuit current in case of fault
 o Fault effects more severe
 o Difficult to isolate fault location
 ▪ Bidirectional flows
 o ‘Selectivity’ principle in danger: no backup ‘higher in the grid’ for failing protection device
 ▪ Conservative approach on unintentional islanding

• Solution:
 ▪ New active protection system necessary
Societal issues

• Problems:
 - Environmental effects
 - Global: more emissions due to non-optimal operation of traditional power plants
 - Local effects as power is produced on-the-spot, e.g. visual pollution
 - Making power locally often requires transport infrastructure for (more) primary energy
 - Problem is shifted from electrical distribution grid to, for instance, gas distribution grid!

• Solution:
 - Multi-energy vector approach
 - Open debate on security of supply
Economic issues

• Problems:
 ▪ Pay-back uncertain in liberalized market
 o ‘Chaotic’ green and efficient power production
 o Reliability or PQ enhancement difficult to quantify
 ▪ System costs
 o More complicated system operation
 o Local units offer ‘ancillary services’
 ▪ System losses generally increase
 ▪ Who pays for technological adaptations in the grid? Who will finance the backbone power system?
 o Too much socialization causes public resistance

• Solution:
 ▪ Interdisciplinary regulation, not only legal
 ▪ Need some real ‘deregulation’
System losses example

- DG introduction does not mean lowered losses.
- Optimum is 2/3 power at 2/3 distance.
- Other injections generally cause higher system losses.

Power flow along cable:

Before DG

After DG

DG (2.68 MW)

Zero point
Balancing question, again

- Fundamental electrical power balance, at all times is the boundary condition:

\[
Electricity \text{ produced} - \text{ system losses} = electricity \text{ consumed} - \text{ storage}
\]

- All sorts of reserves will decrease in the future
- Role of storage? Storage also means cycle losses!
- Next step in enabling technologies
 - *Usable* storage
 - Activated intelligent loads (demand response technology), also playing on a market?
 - Boundary condition: minimize losses
How far can we go?

• Large *optimization exercise*, considering the different technical barriers:
 - Optimal proliferation, taking into account local energetic opportunities, e.g. renewables options
 - Unit behavior towards grid: technology choice
 - Control paradigm
 - Is the same level of reliability still desired?
 - Level of introduction of new additional technologies (storage, activated loads)

• Optima are different, depending on stakeholder
 - E.g. grid operator vs. client
Optimization example

- Total problem yields a huge mixed discrete-continuous optimization problem
 - Optimization goals: voltage quality penalty, minimum losses, minimum costs
 - Complexity: sample grid yields 2^{40} siting options for simple domestic CHP and PV scenario → need advanced maths
 - Results are different hourly and vary with time of year,

 e.g. during day: PV opportunities → in peak hours: CHP helpful
Conclusion

• Current grid:
 ▪ Interconnection
 ▪ Higher PQ level required
 ▪ DER looking around the corner

• History repeats: after 100 years the idea of locally supplied, independent grids is back
 ▪ Microgrids, being responsible for own ancillary services

• Maximum (optimal?) level of penetration of DER = difficult optimization exercise

• Special (technological) measures are necessary
 ▪ E.g. in system control, mainly balancing
 ▪ Role of loads?

• Not only technology push, but also customer pull
more information:
http://www.esat.kuleuven.be/electa
check publications sections, e.g.:

or contact
johan.driesen@esat.kuleuven.be

Thank you!
(now, let’s discuss)