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1. Introduction
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Low Voltage Bipolar Type DC Microgrid
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Features of Proposed DC Microgrid 

1. The distribution of load side converters 

provides super high quality power supplying. 

2. Various forms of electric power like single 

phase 100 V, three phase 200 V, DC 100 V 

can be obtained from the ±170 V DC line. 

3. Rapid disconnection and reconnection with 

the utility grid are realized easily. 

4. Electric power can be shared between load 

side converters. 
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2. System Configuration 

and Control Scheme 
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System Configuration 

All residences have their own distributed generations 

and  share each other’s electrical power. 

Concept of the System 
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All cogenerations are controlled by on/off operation. 

Then, total power from the generations can be 

calculated by a number of operating generations. 
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Power Management Scheme : Interconnected Mode 
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Configuration of Experimental System 

• The experimental system 

consists of 3 houses. 

• EDLC was chosen as an 

energy storage. 
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•Voltage clamping control is mentioned.

•The experimental results are shown.

• Fundamental system characteristics 

Load variation Operation of DGs  

Voltage sag Short Circuit at the load side  

• Power Supplying to real home appliances 

• Control method of operating DGs’ amount 

• Disconnection from and reconnection with the utility grid 

System stable operation was confirmed by the experiments as follows:

In this presentation

Experiments 
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Control of EDLC in Interconnected Mode 

AC 
DC 

Utility grid 

Load 

DG 

Load 

DG DC 

DC 

Interconnected mode 

Electric 

Double Layer 

Capacitor 

(EDLC) 

DC Voltage Constant Control 

Upper Limit 380 V 

Lower Limit 320 V 

Clamp distribution voltage when 

the voltage becomes out of range. 

Distribution Voltage 340 V ±170 V  

3. Help disconnection and reconnection process

Effect of Voltage Clamp

2. Prevent over voltage of the devices connected to dc line

1. Keep distribution voltage if the current of rectifier is limited.
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Control Scheme of Disconnection
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Experimental Results of Disconnection

Seamless disconnection was verified when blackout occurred.
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Control Scheme of Reconnection
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Experimental Results of Reconnection

Smooth reconnection was verified when utility grid was recovered.
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The voltage sag did not make 

 the system disconnect. 

Fault ride-through operation 

Experimental Results of Voltage Sag 
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3. System Configuration 

for Loss Calculation
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Objective of this Research

Losses were calculated by 

• Load data measured in a 

residential complex

• PV output data estimated by 

global solar radiation and 

temperature of a PVpanel 

measured by Osaka University.

Those are whole year data
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Size of Target Residential Complex
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4 floors

5 houses on a floor

Size is referred to a real residential complex in Japan

20 houses

PV : 30 kW

Gas 

Engine

6.6 kW
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Distribution Line Configuration (AC)
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Distribution Line Configuration (DC)
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PV 30 kW

GE 6.6 kW

DC ±200 V
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Composition of Each House (AC)
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Composition of Each House (DC)
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Example of Load Converter Efficiency
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Refrigerator and Washing Machine

AC System

DC System

Efficiency

92 %

95 %

95% 97% 

98% 97% 
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4. Data for Loss Calculation
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Total Electric Power Consumption
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Hot-water Consumption
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Output Data of PV System
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Converter Efficiency for PV Panel
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Rated Capacity is 30 kW. 

PV is controlled under MPPT control. 

Output power can be flown to the utility grid.
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 Converter Efficiency for Grid Interface (DC only)

33 

Rated Capacity is 80 kVA ( = 4 kVA x 20 houses). 

A chain link type multilevel converter is assumed 

because of its high efficiency. 
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5. Results of Loss Calculation
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Simulation of Loss Comparison

35 

• Load ( electricity, heat, common lights ) 

• PV output ( 30 kW )

Calculation step: 30 min,  Period : 1 year 

• Gas engine (6.6 kW)

Averaged data were used in each month.

Estimated data (365 days) were used.

The operation was determined from heat demand.

Loss calculation was carried out under following conditions.
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DG Output Energies and Consumption
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Total Losses

37 

Losses of the dc system are around 15 % 

lower than that of the ac system for one year.



Ise Laboratory, Osaka Univ.

Loss Reduction Ratio
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The loss reduction ratio is higher than 16 %.  
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Details of AC & DC System Losses
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The distribution losses are negligible in both systems. 
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6. Conclusions
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Conclusions(1)

• The configuration and  operation of a low 

voltage bipolar type dc microgrid for 

residential houses was proposed. 

• The experimental results by a laboratory scale 

model demonstrated the system’s steady 

operation when the system was disconnected 

from and reconnected with the utility grid. 

• The experimental results demonstrated dc 

microgrid was stable against voltage sags, and 

the fault ride-through operation was also 

realized by the proposed operating scheme. 
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Conclusions(2)

• The losses of ac and dc microgrid for 

residential complex are compared. 

• The simulation results show that the whole 

losses of the dc system are around 15 % lower 

than that of the ac system for a year. 

• If the energy storage is included, it is expected 

the loss reduction effect of dc distribution 

becomes higher than this result.

42 
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LVB 4 mH 

Rline1 0.5  

Lline1 30 μH 

Rline2 1  

Lline2 30 μH 

LDG1,2,3 5 mH 

CDG1,2,3 220 μF 

EDG1,2,3 400 V 

V1_load 100 V 

Cfinv 12000 μF 

Lload 2 mH 

Cload 18.3 μF 

VUL 150 V 

VUL 120 V 

CEDLC 18 F 

REDLC 0.16  

LEDLC 7 mH 

Main Parameters

Utility grid

House 1

House 2

House 3
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PV Panel Specification
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solar cell single-crystal 

circuit 

configuration 

10 series 

5 parallel 

optimal operation 

voltage 

225 V 

optimal operation 

current 

12 A 

maximum Power 2700 W 

angle of tilt of PV 

panel 

31° 

angle of direction 

of PV panel 

23.69° 

PV panel specification 

Target PV panel for the estimation 
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Load Converter Efficiency
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Air conditioner

AC System

DC System

Efficiency
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95% 97% 

98% 97% 
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Load Converter Efficiency
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Liquid Crystal Display (LCD), and LED Light

AC System

DC System

Efficiency

91 %

94 %
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Algorism of Gas Engine Operation
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Consumption of Common Lights
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Output Power of PV System
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•Temperature of PV panel surface 

•Total solar radiation on PV panel 

Parameters for the estimation of the maximum power  

Temperature :  

We measured the panel temperature 

minutely by a data logger 

Solar radiation : 

The total radiation on  horizontal was 

measured minutely. 
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Estimation of  PV Output Power
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Gas Engine Operation
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Rated Capacity is 6.6 kW. 

The operation of the gas 

engine cogeneration is 

determined from the hot 

water demands. 

It is assumed that 

output power can not be 

flown to the utility grid.
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Line Loss Calculation

52 

Output Power

Voltage

Loss

Input Power


