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ARIES

ARIES is a research platform designed to de-risk, optimize, and
secure current energy systems and to provide insight into the
design and operation of future energy systems. It will address
the fundamental challenges of:

* Variability in the physical size of new energy technologies
being added to energy system

e Controlling large numbers (millions to tens of millions) of
interconnected devices

* Integrating multiple diverse technologies that have not
previously worked together
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NREL ARIES — DRTS Cluster at HERTH

(Hybrid Energy Real-Time Hub)

Increasing variability in the
physical size of new energy
technologies

A large cluster of Digital Real-Time Simulation (DRTS)
to simulate regional power grid use-cases

NREL | 3



100 ~ 10 kV nodes in real time
AC Transmission
“'d

S

HIL
(actual)

Controllable
Grid Interface
(CGI)

Y

(virtual)

¢ 10 HIL
Wide-bandgap (vlr?gal)
power converter o
(virtual) E':\rv?fsion
Thermal £

emulator v ek Real World
Sensor Data-driven
Hydro Model

NREL Integrated DRTS Capabilities




High-Fidelity Thermal , Multi-Physics Emulation Platform

e Visualization Center | [J bxisting Hardware
i Concentrated Solar Power {1 Physics-based Models
(Parabolic Trough Collectors) Gas Turbine
© Thermal Energy S Bil
. Storage v N u
: e ? A R Electric Grid
"""""""" New Geothermal f
Plant Digital Real Time Simulation (Gl to Emilate Bulk

Environment

e _ I I Power Grid Dynamics
Thermal !, Controllable Grid

Emulator 3

\~~
-
-
-~ -

Organi-c-ﬁa-a;king Interface (CGI)

(ycle

............................................................................................................................................................................



ARIES Flatirons Capabilities

Pre-FY18 FY18 - FY22
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1.5 MW Industrial Scale
Wind Turbine
(Additional ~5 MW turbines)

730 kW (total) PV Arrays
1MW / 1IMWh Li-ion Battery

3MW Programmable Load
Bank

+Six Grid Integration
Research Pads

Eight Digital Real Time
Simulators (DRTS)

+34.5 kV upgrade (phase 1),
+20 MW power upgrade,

115 kV to 13.2 kV Substation
and 115 kV Transmission Line

5 MW and +Synchronous
Generator Upgrade 2.5 MW

Dynamometers

Virtual Emulation Environment
Visualization and Control Room

Control Center Facility

7 MW Controllable Grid
Interface (CGI-1)

20 MW Controllable Grid
Interface (CGI-2)

<)

2 MW Power
Electronics Grid
Interface (PEGI)

1.25 MW Hydrogen
Hub and 1 MW
Fuel Cell

1 MW Behind the
Meter Storage and EV
Fast Charge

ESnet 100 Gbps
Connection to ESIF

@ 500 kw Distributed

Integrated Energy
Laboratory (DIEL)



Integration with 10T/RTU/ Controllers at Scale

Data packets from different categories of devices (I0Ts, RTUs, PMUs) can be
ingested at a city/regional scale and passed on the HERTH platform for at-
scale simulation of distribution automation, microgrids and nano-grids
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Expansion of at-scale Hardware-in-the-Loop Analysis Capability

System Configuration & Scenarios

100s devices 10ks devices

2 MW 20 MW >20 MW
ARIES ESIF ARIES FC ARIES VEE

System & Component Size
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The Science of Scaling for MW Devices

- Inertia - Dynamic behavior
- Non-linearity Challenges - System integration
- Response time

: - Lifetime and performance
- Transfer mechanisms
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DOE AMO Megawatt — Hardware Evaluation using Thermal Emulation

1 MW, ORC Evaluation Platform using a 5 MWy, Thermal Emulator at ARIES for Grid Integration
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Scaling Approach Using Machine Learning

Digital Real Time Simulation
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US DOE/NREL — Norway Collaboration on Advancing Hydropower Modernization Research
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ARIES HydroWIRES DR-HIL — Hydro power Prediction Using ML

Data server, PMUs, hydro sensors,
controller measurements, etc.
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Resilient Alaskan Distribution system Improvements using Automation

Network analysis, Control, and Energy storage (RADIANCE) — MG Use Case

Humpback Creek Hydroelectric Plant
1250kW (2 x 500 kW + 1 x 250 kW)

SN 17,000 foot UG and submarine
transmission line

Power Creek Hydroelectric
6248kW (2 x 3124 kW)

A 25 kV transmission ties to Eyak
Substation, Inflatable dams

City of Cordova

2300 customers, 18MW
One Substation

78mi UG distribution lines

Orca Power Plant
10.8 MW Diesel

Raging Creek — future hydro site
Control Center, CEC Potentially pumped hydro storage

1MW-1MWh ABB-Saft BESS installed and commissioned
Zonal reconfiguration using AMI and dispatchable electric boiler to be installed and commissioned
Upgrade to digital governors for diesel plant NREL |
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Resilient Alaskan Distribution system Improvements using Automation

Network analysis, Control, and Energy storage (RADIANCE)
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RADIANCE — Resilience by Design

= Resilience by design — using zonal approach in networked microgrids
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RADIANCE - Approach — Resilience Metrics Definition

R=fAWR)

EVENT TIMELINE

>

* How quickly can
system recover
from event and
continue supply
to critical loads?
And at what
cost?

" —

» How well is the
system prepared
for the predicted
impact of an
incoming event?

* How well can
system continue
to supply critical
loads during
event?

BEFORE EVENT DURING EVENT AFTER EVENT

Based on determining all the system factors impacting system ability to provide
energy to the critical loads and integrating all the factors for AWR
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(REDSEA) -REsilientDistrict heating for Sustainable Energy Adoption in Cordova

Community Emergency Center
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ETIPP - Sitka AK Utility analysis — DRTS Multi-rate Simulation Model

Wind Turbine-1
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NREL - UI-ASSIST Microgrid Environment

AC Transmission

UL-ASSIT Collaborator « US
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validation of digital twin

Remote connectivity for field
data used for calibration and

Power system simulation at 50us
Power electronics simulation at 2us

Texas A&M Universit

_»_ Nano-controller (CHIL )
I a Digital multiplier of

the “x” number of
nano-controller
HIL devices

The U.S.-India collAborative for smart diStribution System with Storage, is a six-year
collaboration between several partners in the United States and India. Led by
Washington State University in the US and IIT Kanpur in India, UI-ASSIST aims to
increase accessibility to renewable energy in both countries.
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Hydrogen - Potential Grid Service Capabilities

* Electrolyzer can provide wide-area

* Electrolyzer can be used as controllable .
frequency and voltage regulation.

load and provide fast sub-second response.
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Enabling Utilities to collaborate with lab-scale facilities to evaluate hardware

innovations and their impact on the power grid: ELECTROLYZER EXAMPLE

e PHIL (PV, Wind, BESS)
" H2 plant
FlexPower Hybrid Plant  EYSHYV=* | RTDS models
Controller (NI PXI Chassis) JEELE] FlexPower Hybrid Plant

MODBUS TCP Interface S qa ITM Interface
s and : poni ipoc(t)
(selective pts.) l ' Tunhoon HIL

MODBUS TCP Interface | I ITM Interface |
Power Converter #1 Power Converter #2
Low level Controls

Low level Controls

for Electrolyzer system

for Fuel Cell system

Electrolyzer stack Fuel Cell stack

Analog & Digital I/0s

EPC HILConnect

Controller Card #1

Controller Card #2

| .
Igggaoeoﬂ!#ﬂp

EPC HIL Connect
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Hydrogen Electrolyzer Standardization

SunSpec
MODBUS
Standard and
Vendor Model
in Typhoon HIL

SunSpec
MODBUS
Interface in
Typhoon for
Hydrogen
Electrolyzer, with EPC
includes low- Power’s power
level control converter
integration with controller.

Real-time Simulation
Model Validation

CHIL Validation

H2SCADA.
> >

SunSpec System
Validation
Platform with

Typhoon CHIL.

CHIL-based
Validation in
Typhoon HIL
Real-time Test
Suite.

Industry Engagement

Electrolyzer
Information
Model and
Interface
Standardization
with SunSpec,
Electrolyzer,
Power Standards such
Electronics as |EEE 1547.

Industry
acceptance,
adoption, and
harmonization
with Grid Codes
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Rule-14) and

Industry Adoption
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Current work

Industry
collaboration n e l ®

Typhoon HIL

epcpouer I gy

)

== RALLIANCE =

SUNSPEC ® Hitachi Energy

Future work >

Additional industry
@ collaboration:
T Eco () Westinghouse

SEMIKRON
DANFOSS

M OPAL-RT

—==m@ TECHNOLOGIES

NREL | 23



DOE- AMO Megwatt - Integration into Real Time Simulation

Environment

Megawatt Scale, Multi-Source Heat Recovery System with a Flexible Grid Interconnect

v

ORC integration into real time simulation
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Megawatt - Integration into Real Time Simulation Environment

ORC integration into real time simulation
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Megawatt - Machine learning approach for scalability

Input
Heat input: Qin(t) Transient physics- %e” Electric
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Thank You

Rob Hovsapian, Ph.D.
Research Advisor
National Renewable Energy Laboratory
Rob.Hovsapian@nrel.gov
850-339-9432
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