





Singapore 2022 Symposium on Microgrids 1 − 2 November 2022

# DC microgrid powered EV charging station versus public grid powered EV charging station

#### Prof. Dr Manuela SECHILARIU

**Microgrids and Energy management** 

Alliance Sorbonne University

Université de Technologie de Compiègne, France Deputy director of GDR SEEDS

https://seeds.cnrs.fr/le-comite-de-pilotage/

Co-manager IEA PVPS Task17 and leader ST2

https://iea-pvps.org/research-tasks/pv-for-transport/











#### **Outline**

- 1. Context and motivation
- 2. Public grid impact considering electromobility
- 3. DC microgrid powered electric vehicle (EV) charging stations Case studies
- 4. Optimized DC microgrid for recharging EVs
- 5. Impact CO<sub>2</sub>: DC microgrid versus public grid
- 6. Conclusions and perspectives





#### 1. Context and motivation

- Stock growth of electric vehicles (EVs)
  - Battery Electric Vehicle (BEV) & Plug-in Hybrid Electric Vehicle (PHEV)
- Growth of charging infrastructures for low-duty vehicles (LDVs)
  - Most of EV owners have access to at least one private charger at home and/or workplace
  - Slow chargers represent the main deployment
- Microgrid powered EV charging station versus public grid powered EV charging station







### 2. Public grid impact considering electromobility

- French public grid (2019)
  - 537.7 TWh total energy production
  - 135.328 GW total installed power
- Scenarios
  - Number of EVs
  - Daily trip (km)
  - Simultaneous charge
- Energy demand
- Power demand
  - Fast charge
  - Ultra-fast charge
- Random distribution of peak hour charging power for 10 million Evs
  - 10% simultaneity → 25.18 GW → 18.5%
  - Solution ? Energy mix

| HYPOTHESES       |                                             | ENERGY                    |                                              | POWER |                                    |                   |                                            |                        |                   |  |
|------------------|---------------------------------------------|---------------------------|----------------------------------------------|-------|------------------------------------|-------------------|--------------------------------------------|------------------------|-------------------|--|
| Daily trip in km |                                             | Total energy Total energy |                                              | •     | uired power for<br>charge power (2 |                   | Required power for slow charge power (7kW) |                        |                   |  |
| Number of<br>EVs | at average<br>consumption of<br>15kWh/100km | recharging<br>GWh/year    | recharging /<br>total energy<br>production % | GW    | 10% simultaneous power             | % installed power | GW                                         | 10% simultaneous power | % installed power |  |
|                  | 20.00                                       | 1 095.00                  | 0.20                                         |       | 0.23                               |                   | 7.00                                       | 0.70                   | 0.52              |  |
| 1 000 000.00     | 40.00                                       | 2 190.00                  | 0.41                                         | 2.30  |                                    | 0.17              |                                            |                        |                   |  |
|                  | 60.00                                       | 3 285.00                  | 0.61                                         |       |                                    |                   |                                            |                        |                   |  |
|                  | 20.00                                       | 5 475.00                  | 1.02                                         | 11.50 |                                    |                   | 35.00                                      | 3.50                   |                   |  |
| 5 000 000.00     | 40.00                                       | 10 950.00                 | 2.04                                         |       | 1.15                               | 0.85              |                                            |                        | 2.59              |  |
|                  | 60.00                                       | 16 425.00                 | 3.05                                         |       |                                    |                   |                                            |                        |                   |  |
|                  | 20.00                                       | 16 425.00                 | 3.05                                         |       | 3.45                               | 2.55 10           |                                            |                        |                   |  |
| 15 000 000.00    | 40.00                                       | 32 850.00                 | 6.11                                         | 34.50 |                                    |                   | 105.00                                     | 10.50                  | 7.76              |  |
|                  | 60.00                                       | 49 275.00                 | 9.16                                         |       |                                    |                   |                                            |                        |                   |  |

| HYPO             | OTHESES                                     | ENE                    | RGY                                          |        | POWEI                         | R                 |         |                              |                   |
|------------------|---------------------------------------------|------------------------|----------------------------------------------|--------|-------------------------------|-------------------|---------|------------------------------|-------------------|
| Nemakanaf        | Daily trip in km                            | Total energy           | Total energy                                 | Requ   | ired power for to power (22k) | _                 | Require | d power for ultr<br>(50kW)   | a-fast power      |
| Number of<br>EVs | at average<br>consumption of<br>15kWh/100km | recharging<br>GWh/year | recharging /<br>total energy<br>production % | GW     | 10% simultaneous power        | % installed power | GW      | 10%<br>simultaneous<br>power | % installed power |
|                  | 20.00                                       | 1 095.00               | 0.20                                         | 22.00  | 2.20                          |                   | 50.00   | 5.00                         | 3.69              |
| 1 000 000.00     | 40.00                                       | 2 190.00               | 0.41                                         |        |                               | 1.63              |         |                              |                   |
|                  | 60.00                                       | 3 285.00               | 0.61                                         |        |                               |                   |         |                              |                   |
|                  | 20.00                                       | 5 475.00               | 1.02                                         |        |                               |                   |         |                              |                   |
| 5 000 000.00     | 40.00                                       | 10 950.00              | 2.04                                         | 110.00 | 11.00                         | 8.13              | 250.00  | 25.00                        | 18.47             |
|                  | 60.00                                       | 16 425.00              | 3.05                                         |        |                               |                   |         |                              |                   |
|                  | 20.00                                       | 16 425.00              | 3.05                                         |        |                               |                   |         |                              |                   |
| 15 000 000.00    | 40.00                                       | 32 850.00              | 6.11                                         | 330.00 | 33.00                         | 24.39             | 750.00  | 75.00                        | 55.42             |
|                  | 60.00                                       | 49 275.00              | 9.16                                         |        |                               |                   |         |                              |                   |



### 3. DC microgrid powered EV charging stations

#### Under what conditions can PV-based microgrid help recharge EVs?

- PV system 29.8kWp
- Storage 17.76kWh / 7kW (max)
- Public grid limit 22kW (max)



#### Provided inputs:

Latitude/Longitude: 49.402, 2.796

Horizon: Calculated

Database used: PVGIS-SARAH

PV technology: Crystalline silicon

PV installed: 29.8 kWp

System loss: 14 %

Azimuth angle: Yearly PV energy production: 31525.04 kWh 1314.64 kWh/ Yearly in-plane irradiation: Year-to-year variability: 1250.66 kWh Changes in output due to: Angle of incidence: -3.06 % Spectral effects: 1.71 % Temperature and low irradiance: -5.1 % -19.53 % Total loss:

Simulation outputs

Slope angle:





Average daily PV production for December is 36.22 kWh

35°

#### **Case studies**

#### Goal

- Analyze the quantity of PV energy versus the public grid energy
- Discuss the conditions under which the PV-based microgrid powered charging station really allows full benefit from renewable energies

#### Driver profile

- Daily urban/peri-urban trip 20km 40km
- EV urban consumption
  - Eco-drive 10kWh/100km
  - Normal drive 15kWh/100km
- Average daily needed charge
  - Eco-drive 2kWh 4kWh
  - Normal drive 3kWh 6kWh

#### Charging mode

- Slow charging
- Fast charging

#### Assumptions

- Initial SOC<sub>EV</sub> and desired final SOC<sub>EV</sub> for each EV are known
- All 5 EVs are equipped with the same battery capacity of 50 kWh







P<sub>PV MPPT</sub>

### Case 1: slow charging mode operation for all 5 EVs

9000

7000

6000 5000

- 5 EVs to charge
- Initial and desired final EV SOC known
- Charging power (slow mode) 1.8 kW
- Arrival of Evs

| EVs ene | rgy flow            | ):30 EV2          |      |            |       |          |                        |      | W. Marie           |                         | 50 %<br>50 %<br>40 30 20                                                      |
|---------|---------------------|-------------------|------|------------|-------|----------|------------------------|------|--------------------|-------------------------|-------------------------------------------------------------------------------|
| EVs     | EV energy<br>demand | EV ene<br>receive |      | PV EI      | nergy | disch    | rage<br>arging<br>ergy |      | supply<br>ergy     | -2000<br>-3000<br>-4000 | 10                                                                            |
|         | kWh                 | kWh               | %    | kWh        | %     | kWh      | %                      | kWh  | %                  | 09:00                   | 0 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00<br>Time (h)           |
| EV1     | 5                   | 5                 | 100  | 3.79       | 75.80 | 1.21     | 24.20                  | 0    | 0                  | 10000                   | TVs charging time direction:                                                  |
| EV2     | 4                   | 4                 | 100  | 3.31       | 82.75 | 0.69     | 17.25                  | 0    | 0                  | 9000                    | EV1: 2h47 EV2: 2h14 EV3: 1h24 = 90 = p <sub>EV1</sub> = 90 = p <sub>EV2</sub> |
| EV3     | 2.5                 | 2.5               | 100  | 2.28       | 91.20 | 0.22     | 8.80                   | 0    | 0                  | 8000 -                  | EV4: 2h14 EV5: 3h04 EVs total energy 21 kWh                                   |
| EV4     | 4                   | 4                 | 100  | 3.72       | 93.00 | 0.28     | 7.00                   | 0    | 0                  | 7000                    | P <sub>EV</sub>                                                               |
| EV5     | 5.5                 | 5.5               | 100  | 2.70       | 49.10 | 2.80     | 50.90                  | 0    | 0 §                | 6000                    | 70 = EV4 = p <sub>EV5</sub> = soc <sub>EV1</sub>                              |
|         |                     |                   |      |            |       |          |                        |      | o<br>EVs Power (W) | 5000 -                  | - 50 soc <sub>EV2</sub>                                                       |
|         |                     |                   |      |            |       |          |                        |      | /s P               | 4000                    |                                                                               |
| System  | energy flow         |                   |      |            |       |          |                        |      | Ш                  | 3000                    | 30soc <sub>EV4</sub>                                                          |
| PV ener | y Storage           | discharging       | ; St | orage char | rging | Grid sup | ply energy             | Gric | linjection         | 2000                    | 20                                                                            |
| (kWh)   | energ               | gy (kWh)          | - 6  | energy (kW | √h)   | (k\      | Wh)                    | ene  | rgy (kWh)          | 1000                    | 10                                                                            |
| 21.81   |                     | 5.20              |      | 6.00       |       |          | 0                      |      | 0                  | o 🖵                     |                                                                               |
|         | _                   |                   |      |            |       |          |                        |      |                    | 09:0                    | 00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00                      |



Time (h)

### Case 2: slow and fast charging mode operation

- 5 EVs to charge
- Initial and desired final EV SOC known
- Charging power: slow 1.8 kW and fast 22kW
- Arrival of EVs
  - EV1: 09:40 EV2: 10:00 EV3: 10:50 EV4: 14:40 EV5: 15:00

| EVs ene | rgy flow            |                              |     |                                  |       |                    |       |      |        |
|---------|---------------------|------------------------------|-----|----------------------------------|-------|--------------------|-------|------|--------|
| EVs     | EV energy<br>demand | EV energy PV energy received |     | Storage<br>discharging<br>energy |       | Grid supply energy |       |      |        |
|         | kWh                 | kWh                          | %   | kWh                              | %     | kWh                | %     | kWh  | %      |
| EV1     | 5.50                | 5.50                         | 100 | 4.63                             | 84.18 | 0.68               | 12.36 | 0.19 | 3.46   |
| EV2     | 3.50                | 3.50                         | 100 | 0.17                             | 4.86  | 1.03               | 29.43 | 2.30 | 65.71▼ |
| EV3     | 3.00                | 3.00                         | 100 | 2.74                             | 91.33 | 0.26               | 8.67  | 0    | 0      |
| EV4     | 3.00                | 3.00                         | 100 | 2.09                             | 69.67 | 0.74               | 24.66 | 0.17 | 5.67   |
| EV5     | 3.50                | 3.50                         | 100 | 0.41                             | 11.71 | 1.03               | 29.43 | 2.06 | 58.86∢ |
|         |                     |                              |     |                                  |       |                    |       |      |        |





Time (h)

15:00 16:00 17:00 18:00

10:00 11:00 12:00 13:00 14:00



| PV energy | Storage discharging | Storage charging | Grid supply energy | Grid injection |
|-----------|---------------------|------------------|--------------------|----------------|
| (kWh)     | energy (kWh)        | energy (kWh)     | (kWh)              | energy (kWh)   |
| 21.81     | 3.74                | 7.80             | 4.72               | 3.98           |



#### Results analysis and discussion

- How to increase the PV energy consumption for EVs charging?
- Preliminary requirements and feasibility conditions
  - Slow charging up to 7kW
    - Based mainly on PV energy and storage
    - Storage power limit up to 7kW
    - EV battery filling up to 6kWh
    - Acceptance relative to
      - Slow charging instead fast charging
      - Eco-drive instead normal drive
  - Fast charging from 7kW to 22kW
    - Based mainly on grid energy
    - Storage power limit up to 7kW
    - Acceptance relative to high charging price?
  - Charging terminal requirements
    - Constant power vs variable power
  - Known park time duration may increase drastically PV benefits
  - Communication interface required
    - User choices data and initial and desired final SOC<sub>EV</sub>
  - Slow or fast charging for 10% < SOC<sub>EV</sub> < 100%  $\rightarrow$  no restrictions
- Business model?
  - Influencing consumer behavior through charging pricing







### 4. Optimized DC microgrid for recharging EVs

Energy management and optimization of energy costs

Optimization of power flows in real time

> Predictive layer Energy cost optimization layer Operational layer Human Machine Interface (HMI)

Cheikh-Mohamad, S.: Sechilariu, M.: Locment, F.: Krim, Y. PV-Powered Electric Vehicle Charging Stations: Preliminary Requirements and Feasibility Conditions. Appl. Sci. 2021, 11, 1770. https://doi.org/10.3390/app11041770





#### **Energy costs optimization**

- Optimization of energy costs and powers in real time
  - Interaction with HMI
  - Objective to minimize the total energy cost
- Optimization under different constraints
  - Storage protection (limits imposed)
  - Limits imposed by the public network (power absorbed and injected)
  - Conditions for limiting PV production
  - Conditions for limiting the load of EVs
  - Conditions imposed by VE users
  - Chosen charging modes
  - EV battery state of charge
  - Power balancing
- Result: power distribution coefficient
- Real-time control algorithm that takes into account the distribution coefficient and user data

Cheikh-Mohamad, S.; Sechilariu, M.; Locment, F.; Krim, Y. PV-Powered Electric Vehicle Charging Stations: Preliminary Requirements and Feasibility Conditions. Appl. Sci. 2021, 11, 1770. https://doi.org/10.3390/app11041770







Real-time optimisation (experimental results)

|                         |              | P <sub>PV M</sub>   | PPT             | R      | 9            |          |
|-------------------------|--------------|---------------------|-----------------|--------|--------------|----------|
| Power (kW)              |              |                     | PPT pred        |        |              |          |
| 1                       | www          | - M                 |                 |        |              | _        |
| Power (kW) 3            | 11:00 12:00  | 13:00               | 14:00 15:00     | 16:00  | 17:00        | 18:00    |
| 8 2 1                   |              |                     |                 |        |              | -        |
| 9:00 10:00<br>(NN)<br>3 | 11:00 12:00  | 13:00 1             | 4:00 15:00      | 16:00  | 17:00        | 18:00    |
| 9:00 10:00              | · W          | M                   |                 |        |              |          |
| 9:00 10:00<br>((XX) 3   | 11:00 12:00  | 13:00 1             | 4:00 15:00      | 16:00  | 17:00        | 18:00    |
| 1                       |              |                     | 1 1             |        | Married Wall | <b>\</b> |
| 9:00 10:00              | 11:00 12:00  | 13:00 1             | 4:00 15:00      | 16:00  | 17:00        | 18:00    |
| My) Jamod 2             | [WII]paninan | المرابا             | A A A A A A     | Morand | mp/l/wwyn    |          |
| 9:00 10:00              | 11:00 12:00  | 13:00 14<br>Time (h | 4:00 15:00<br>) | 16:00  | 17:00        | 18:00    |

|        | Case opera                                               | tion |
|--------|----------------------------------------------------------|------|
| Case 1 | 27/10/2021 High irradiations with fluctuations           | ı    |
| Case 2 | 22/03/2022 High irradiations w/o fluctuations            | ı    |
| Case 3 | 08/11/2021 Low irradiations with fluctuations            | I    |
| Case 4 | 10/04/2022 High irradiations with low fluctuations       | ı    |
| Case 5 | 14/05/2022<br>High irradiations with low<br>fluctuations |      |

| Case operat                    | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grid cost<br>(c€) | Storage cost<br>(c€) | Total cost<br>(c€) |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|--------------------|
| 7/10/2021                      | Real-time exp w/o opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83                | 6                    | 89                 |
| 27/10/2021 rradiations with    | Real-time exp with opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                | 6                    | 56                 |
| luctuations                    | Optimization for real conditions  Real-time exp w/o opt  Real-time exp with opt Optimization for real conditions  Conditions  Real-time exp w/o opt  Real-time exp w/o opt  Real-time exp w/o opt  Real-time exp with opt | 33                | 5                    | 38                 |
| 22/03/2022                     | Real-time exp w/o opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                 | 7                    | 12                 |
| rradiations w/o                | Real-time exp with opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -22               | 4                    | -18                |
| luctuations                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -71               | 4                    | -67                |
| 00/11/2021                     | Real-time exp w/o opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 132               | 5                    | 137                |
| 08/11/2021<br>rradiations with | Real-time exp with opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67                | 5                    | 72                 |
| luctuations                    | Optimization for real conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                | 5                    | 31                 |
| 10/04/2022                     | Real-time exp w/o opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                | 11                   | 29                 |
| 10/04/2022  Adiations with low | Real-time exp with opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -148              | 5                    | -143               |
| luctuations                    | Optimization for real conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -154              | 5                    | -149               |
| 14/05/2022                     | Real-time exp w/o opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                 | 11                   | 11                 |
| adiations with low             | Real-time exp with opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -161              | 5                    | -156               |
| luctuations                    | Optimization for real conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -172              | 5                    | -167               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                      | utc                |

### 5. Impact CO<sub>2</sub>: DC microgrid versus public grid

Methodology



Study boundaries







#### Case study

- Located in Compiegne, France
- 5 suspended charging terminals (CTs)
- Shade covering 10 parking places
- Area of PV modules: 124 m² (70 PV Panels)
- Peak power of the PV system: 28 kWp
- Power of the inverters: 28.2 \* 0.9 = 25.38 kVA

Time

Nb of EVs charging at 22 kW

Nb of EVs charging at 2.3 kW

- Battery capacity equal to 22 kWh, with recycling by pyrometallurgy
- Electricity supplied over 30 years: estimated at 1.257 GWh including 307.476 MWh from the public grid
- Occupancy rate of CTs is arbitrarily fixed, reflecting the arrivals and departures of 10 EVs throughout the day as given below

08:00-10:00

0

2



4





3

1

4

#### Case study

- Comparison with public grid charging station
- Average French public grid energy mix 59,9 gCO<sub>2</sub>eq/kWh
- Average European grid 420 gCO<sub>2</sub>eq/kWh
- Public grid charging station (PGCS)
  - 59,9 gCO<sub>2</sub>eq/kWh
- PV-powered charging station (PVCS)
  - 68 gCO<sub>2</sub>eq/kWh with PV at 40 gCO<sub>2</sub>eq/kWh



- Reduce the carbon impact of PVCS
  - S2: PV at 25 gCO2eq/kWh and recycled materials
  - S3: PV at 10.6 gCO2eq/kWh and recycled materials

 $Imp_n(kgCO_{2eq}) = CO_{2,n}(kgCO_{2eq}/kWh) \cdot Q_n(kWh)$ 

$$Imp_{PVCS} = 85\,961\,kgCO_{2eq}$$

with PV at 40 gCO<sub>2</sub>eq/kWh

$$Imp_{PGCS} = Imp_{CT,sus} + Imp_{PG}$$
  
 $Imp_{PGCS} = 77 \ 436 \ kgCO_{2eq}$ 

French public grid







### 6. Conclusions and perspectives

- Microgrid-powered charging stations properly sized and combined with an ecoresponsible drivers' profile represents one of the realistic solution for the e-mobility
- Results
  - EV charging demand is not constrained during the daylight
  - EV user can charge in slow or fast mode depending on the time duration and desired final SOC
- For an average daily urban/peri-urban trip of 20-40 km the PV benefits increase if
  - Daily EV charging instead of weekly
  - Slow charging mode instead of fast charging
  - Variable power changing instead constant power
- Optimized microgrid-powered charging stations
  - Better charging operation to increase PV benefits
- Impact CO<sub>2</sub> less important then public grid charging station
- Further works
  - Social acceptance, incentive business models
  - New services associated with PV-powered EV charging stations (V2H and V2G)





### DC microgrid powered EV charging stations

## Thank you for your attention





