

TERSE: Techno-Economic Framework for Resilient and Sustainable Electrification

Associate Professor Ir. Dr. Gan Chin Kim

Universiti Teknikal Malaysia Melaka ckgan@utem.edu.my

Singapore 2022 Symposium on Microgrids

PARKROYAL at Kitchener Road, Singapore 2 November 2022

TERSE Project Funding Support & Partners

Funding Support

EPSRC Reference: (EP/R030294/1)

Project Partners

TERSE Supporting Partners

Malaysia:

China:

Chile (external research partner):

Universiti Teknikal Malaysia Melaka UTeM

MELAKA UNESCO World Heritage City

TERSE Project Aim

Develop an innovative,
integrated technoeconomic framework for
supporting decision-making
and planning of sustainable,
cost-effective and resilient
energy infrastructure

Probabilistic, spatio-temporal impact assessment of severe weather and natural hazards

Multi-criteria evaluation of electrification portfolios (reliability, resilience and cost)

Decision-making on rural electrification planning for achieving effective trade-offs between multiple criteria

Presentation outline

- 1 Rural electrification transformation in Sarawak
 - 2 SARES community-based solar project
 - 3 Strategic sustainable rural electrification
- 4 TERSE video

Rural electrification transformation in Sarawak

Rural Power

Master Plan

RES

Rural Electrification Scheme

Conventional electrification approach by extending existing grid lines into the interior.

Has reached a critical point where the existing system is no longer able to support further extension.

Hybrid

Solar/Mini Hydro Hybrid

Providing off-grid solutions for villages which are deemed unable to be connected to existing grid in the immediate future.

Renewable solar or hydro supplemented by diesel generators.

SARES

Sarawak Alternative Rural Electrification Scheme

Fast track solution by providing very remote villages with standalone solar or micro

hydro systems within the shortest time.

Community based system with

RPSS

Rural Power Supply Scheme

A new approach aims to complement RES by introducing new transmission lines and substations in the rural areas.

Enabling existing gridlines to extend into the interior.

RES MVCC Lines: Site photos

MVCC: Medium Voltage Covered Conductors

RES Last Miles Phase 1 & 2: Site Photos

Sarawak Alternative Rural Electrification Scheme (SARES)

sarawak energy

- SARES program was launched in March 2016
 - To electrify 300+ the remotest villages within 5 years from 2016 to 2020
 - RM 500 million funding
- To provide a basic level of service for every household
 - 1 kW power per household
 - Daily energy of 3 kWh per household
 - Capable to cover 2 continuous days of bad weather
- Sarawak Energy is appointed to implement the project
 - Completed systems are handed over to village communities to operate and maintain

SARES Solar Implementation

 Initial RM500 million funding for 323 villages & 8,700 households

sarawak

energy

- Additional **RM110 million** in Projek Rakyat funding
- KPLB Fasa 1B of RM35 million, completed in 2018
- KPLB Fasa 2 of RM200 million funding for 2021/22 projects

Year	Villages	Households
2016	58	1,388
2017	59	1,604
2018	75	1,968
2019	85	3,028
2020	131	4,227
Subtotal	408	12,215
2021/22	141	2,863
Total	549	15,078

SARES Community Based Solar Schemes

- Villages at the remotest regions
- Without proper land access
- Limited disposable household income

- Simple design and ease of O&M
- Villagers trained to undertake basic O&M
- No charge/bill for electricity used

SARES – Implementation Process

Transportation of materials

Civil & structural construction

Electrical installations

Solar installations

Commissioning & training

Handing over to community

SARES Phase 5 – Project photos

SARES Community engagement

Courtesy of Rural Electrification Dept., Sarawak Energy Berhad

Sustainability of SARES scheme

16

Strategic sustainable rural electrification

Integration of economics, reliability and resilience considering

- Grid expansion vs off-grid applications
- Hybrid micro-grids based on renewable energy sources
- Considering geographical conditions and road access
- Analysis of social impacts from energy access, e.g. health, education, employment and economic benefits
- Single and multi-hazard risk analysis

Grid expansion vs off-grid applications

Low density of off-grid villages

High density of off-grid villages

As the number of villages increases, it may be more cost-effective to electrify the villages through on-grid options

What's next AFTER the on-grid transition

HH = Household

Source: https://globalsolaratlas.info/map

Assessing power system resilience to floods

Inundation risk map for substations in Bintulu

Wenzhu Li, et al., "Assessing Power System Resilience to floods: A Geo-Referenced Statistical Model for Substation Inundation Failures", 2022 IEEE ISGT-Europe, Serbia, October 2022.

Focus on extremes: Conditional Value at Risk (CVaR) of ENS

Landslide hazard

To generate spatial prediction of the probability of an area (e.g. a grid cell) being hit by a landslide per unit time.

Landslides and flooding

Scenarios:

- 1. Access following existing roads
 - 2. Avoiding areas with moderate/high risk of landslides
 - 3. Avoiding areas with moderate/high risk of flooding

There can be trade-off between the exposure to different hazards, e.g., areas with lower flooding risks may experience higher landslide risks

The energy quadrilemma

Social aspects - site visit to SARES villages

Visited 7 long house villages to understand how the SARES scheme had impacted communities' lives

TERSE Project Video

Acknowledgements

- ☐ The International Microgrid Symposium Steering Committee for the invitation
- ☐ The University of Manchester
 - Prof. Pierluigi Mancarella (PI), Prof. Duncan Shaw, Dr Mathaios Panteli, Dr Eduardo A. Martínez Ceseña, Dr Ruben Bravo Vargas, Dr Jennifer Bealt, Wenzhu Li
- Newcastle University
 - Prof. Richard Dawson, Dr Fergus McClean, Dr David Milledge
- ☐ Sarawak Energy Berhad
 - Rural Electrification Department
 - Research and Development Department
- ☐ Colleagues and researchers from UTeM

Thank you

TERSE: Techno-Economic Framework for Resilient and Sustainable Electrification

Associate Professor Ir. Dr. Gan Chin Kim
Universiti Teknikal Malaysia Melaka
ckgan@utem.edu.my

Singapore 2022 Symposium on Microgrids

PARKROYAL at Kitchener Road, Singapore 2 November 2022