BUCHAREST 2018 SYMPOSIUM ON MICROGRIDS University Politehnica of Bucharest, Romania 2-6 Sept. 2018

The Prince Lab microgrid test bed

Enrico De Tuglie

enricoelio.detuglie@poliba.it

The experimental µG

The µG switchboard

The by-pass inverter

Four-quadrant 200 kVA three-phase AC/AC converter

Main functions of the inverter:

- Decoupling the μG from the distribution grid;
- Direct control of the power exchanged with the distribution grid;
- Regenerative loads;
- Emulation of additional generation;
- Bumpless transition.

Generation facilities - CHP system

The gas-fuelled CHP has a rated power of 120 kW.

The system is equipped with a multi-inverter machine combined with a variable-speed thermo-electric generation unit including two separate engines, able to keep its maximum global efficiency in the range from 15% to 100% of its rated power.

Electric characteristics						
Rated electric power	[kWe]	104				
Rated thermal power	[kW]	185				
Electric power efficiency	[%]	31,5				
Thermal efficiency	[%]	56				
Engine RPM	[rpm]	Variable from 900 to 2,500				
Reactive power		Adjustable from capacity to induttive				

Generation facilities - Microturbine

The Capstone C30 turbine has a rated power of 30 kW.

The gas microturbine consists of a tiny turbocharger rotor that spins at up to 96,000 rpm with a direct coupled permanent magnet generator.

The micro-turbine is equipped with an heat exchanger, that could be combined with the gas-fuelled engine and other systems installed in the laboratory and used for cogeneration applications.

Electric characteristics						
Rated electric power	[kW]	30				
Fuel consumption	[MJ/h]	457				
Exhaust gas mass flow rate	[kg/s]	0,31				
Electrical efficiency	[%]	26				

Generation facilities - PV system

The PV generator is installed on the roof of the parking lots of the lab.

Each of the five sub-arrays is connected to the AC microgrid through an inverter able to comply with any reactive control signal coming from the network operator.

Sub-arrays	Electric characteristics					
	Maximum output power rating [kWp]	Type of modules	N. of strings	N. of modules per string	Total modules	
GFV1	9.216	triple- junction a- Si	4	16	64	
GFV2	10.53	Mono-Si	2	19+20	39	
GFV3	10.5	Poly-Si	2	21	42	
GFV4	9.6	CIS	8	8	64	
GFV5	9.9	Mono N-Type	2	17 + 16	33	

Generation facilities - Wind Turbine Emulator

- The wind turbine emulator has a rated power of 60 kW.
- It consists of a four-quadrant three-phase AC/AC converter equipped with a microcontroller and a Personal Computer (PC).
- Several mathematical models have been implemented into the microcontroller to emulate the behavior of static and dynamic models of wind generators.
- In order to test several wind turbine models under time-varying wind speeds, an anemometer installed on the roof of the laboratory feeds the wind turbine emulator.
- The software is also able to accept as an input the wind speed profile defined by recorded data.

Generation facilities - Wind Turbine Emulator

Storage devices - Battery Energy Storage System

This device is composed of two Sodium-Nichel battery banks for a total storage capacity of 180 kWh and a maximum charge/discharge power of 60 kW.

It is connected to the µG through a bi-⇒ directional converter which allows active and reactive flows in both directions.

The system is supported by a master controller able to monitor in real-time the state of charge and to follow the control signal coming from the SCADA system.

Storage devices - Vehicle-to-Grid (V2G)

The V2G system is composed by a charging station for fast (DC) charging and discharging of electrical vehicles.

DC charging station is connected to the μG through a four-quadrant converter which allows electrical vehicles to supply energy and ancillary services to the μG.

The charging/discharging schedules will be generated by the μG controller (the SCADA) through specific control strategies.

Loads - Programmable Loads

The two programmable loads have a rated power equal to 150 kVA each.

They are equipped with an inverter connected to a set of resistances loading the system up to 120 kW. The same converter can provide an inductive or capacitive load.

The local controller is equipped with an ad-hoc software tool allowing to implement load curves.

Control Room

In a control room hosting 6 client PCs, the operator can control and monitor the overall AC microgrid.

SCADA System – Logical and physical structure

CONTROL LEVEL 3

CONTROL BUILDER

- · Control strategies
- development
 Advanced controls

CONTROL LEVEL 2

OPERATOR ENVIRONMENT

- Display microgrid configuration
- · Supervisory control
- · Alarm analysis/Alert
- management
- Monitoring and Diagnostic
- · Process History
- · Real-time Optimization Process
- Security functions

CONTROL LEVEL 1

FIELD CONTROL

- · Filed device management
- · Primary control
- Acquire and transmit in real time data from/to the microgrid.

Energy Management System - Control Strategies

Test Case I – Blackout

Test Case II – Emergency islanding

Work Done

- → Parallel/Island operation
- Reserve management
- ⇒ Dynamic model of the overall system for Dynamic Security Assessment & Control
- □ Day-ahead Economic Dispatch
- On-line Economic Dispatch

Work to do

- ☐ Influence evaluation on distribution systems (technical end economic aspects)
- □ Load following
- Testing other functions for the optimal operation
- □ Integration of other devices (flywheels, supercapacitors, fuel cells)
- □ Integration of droop controlled devices
- Open Source platform for exchanging data with the scientific community.
- Other Ideas? We are available for cooperations with you.

Thank You

Enrico De Tuglie enricoelio.detuglie@poliba.it

