MICROGRIDS: US DOE Overview

G. Cardoso

gfcardoso@lbl.gov

Microgrids for Enhanced Resilience, Reliability, Economics, and Efficiency

Resiliency: crucial recovery centers during major disruption events Reliability: mitigate utility service interruptions Economics: arbitrage, demand management, controllable loads Efficiency: renewables integration, combined heat and power

Path forward: seamless grid communication to enable grid services and provide low-cost solutions for grid management and damage mitigation

U.S. DOE - Microgrid Program Areas

	Program Areas	Objectives	Goals
1	Remote, Off-grid Microgrids	 Active control of electrical and thermal energy Standardized methods for system designs and performance monitoring Integration of local energy sources 	Reduce fuel usage by 50%, while lowering system life-cycle cost and improving reliability & resiliency
← C O R E	Grid-connected Microgrids	 Planning/design tools Operations/control tools Integration w. distribution systems Standardized cost/performance data 	Achieve the DOE program goals on reliability, efficiency, and costs, and meet community resiliency objectives
	Networked Microgrids	 Tools for planning and evaluation w. new modeling/simulation/optimization capabilities Enabling implementation in cities and regionally 	Meet the defined reliability, resilience, and efficiency targets, during normal and extreme event conditions
SSCUT	Resiliency Tools	 Pre-event preparation During-event detection and mitigation Post-event response, recovery, and remediation 	Advance the capabilities of distribution system tools for resiliency
CRO	Standards and Testing	 New and revised microgrid standards Standardized test methods & testing 	Coordinate development of standards for microgrid controllers and systems; validate the standards via testing

OFFICE OF ELECTRICITY US DEPARTMENT OF ENERGY

ROMDST:

Remote Off-grid Microgrids Design Support Tool

Adapt DER-CAM to develop an optimization-based design support tool considering power flow for optimum mix of DERs.

Features

- Remote community microgrids
- Network constraints (AC OPF)
- N-1 security constraints
- Component part load efficiencies
- Interactive data visualization capabilities
- AC or DC architectures
- Multiple objectives
- Constraints on fuel availability
- Component library
- Network design
- Demonstration and Validation with Alaska communities

Field validation of resilience-based design and operation leveraging resources from multiple networked microgrids.

Scope

- Develop and demonstrate practical use of resilience metrics for coordinated operation; design to minimize outage and financial losses
- Leverage rotational and virtual inertia of microgrid assets including hydro, diesel, energy storage, and µPMU-based sensing to enhance resilience of the overall distribution network
- Rapidly prototype controllers as HIL and conduct cyber-vulnerability testing in a real-time cyber-secure environment
- Field validate increasing resiliency of the distribution system by leveraging resources from multiple networked microgrids

Microgrid Energy Management System Integration with DMS

An integrated system consisting of DMS,OMS, DERMS and µEMS controllers for efficient management of DERs.

Phase 1

- Developing an architecture of integrated system (functions, communication, control, interoperability, security)
- Developing use cases for new DMS functions
- Identifying the gaps in integration of DMS, OMS, µEMS, and DERMS
- Establishing the relationship between different components
- Developing test plan

Phase 2

- Lab demonstration
- Field implementation

Networked Microgrids Optimal Design and Operations (OD&O) Tools

Improve distribution system (in this order)

- Resilience—(to extreme events)
- **Reliability**—(normal/single failures, e.g., N-1)
- Economics—(combined investment and operations)
- Efficiency—(not too sure how this will really be incorporated)

Approach

- Leverage development of past and ongoing projects (ROMDST, RDDT, Microgrid protection, GridLAB-D development, etc.)
- New developments in
 - Microgrid and distribution network protection modeling
 - Network, microgrid, device dynamics
 - Understanding/characterization of regulatory and business environments
 - Operations-based design and investment planning
- Create an offline OD&O tool for networked microgrids
- Perform software testing of OD&O
- Create several design test cases using OD&O
- Validate performance using numerical simulations and CIL/PHIL testing

Resiliency Tools

Resilient Distribution Grid Design Tool

Develop an open-source software, LPNORM, to enable distribution utilities to assess current resilience postures and determine resilient design upgrades.

Distribution System Restoration Tool

Develop an integrated system restoration tool to minimize outage sizes/durations, as well as associated economic and societal losses, caused by extreme weather events.

IEEE Standards for Microgrid Controllers

Goals of IEEE 2030.7 & P2030.8

- Establish specifications and core function testing for microgrid controllers to enable interoperability of different controllers and components needed to operate controllers through cohesive, platformindependent interfaces.
- Allow for flexibility/customization of components and control algorithms while ensuring minimum requirements can be met.
- Focus on functional requirements and interoperability with various DER interfaces.
- Strive to establish comparative performance indices.
- Consider all electrical system interfaces.
- Facilitate wide adoption of standard microgrid controller functional and performance requirements.

Summary Status

- The 2030.7 and P2030.8 are poised to enable deployment of microgrids.
 - Can be used for RFPs, stakeholder understanding, etc.
- IEEE 2030.7 is now an approved standard.
- Balloting closed for IEEE P2030.8 (Jan 2018).
- The core functions for specification and testing are quantifiable dispatch and transitions.

Regional microgrid initiatives

New York

- **NY Prize** competition administered by New York State Energy Research and Development Authority (NYSERDA)
- Promote community microgrids to modernize NY's grid
- 3 phase program:
 - 83 feasibility studies, \$100k
 - 11 engineering design, \$1M
 - build-out and monitoring, 2018/2019

New Jersey

- Town Center Microgrids program, administered by the Board of Public Utilities
- Promote community microgrids
- 2 phase program:
 - 13 feasibility studies, \$200k
 - Engineering design

Multiple other northeastern states have developed microgrid programs

Regional microgrid initiatives

California

- CA leads some efforts: energy efficiency, EV sales
- Large *EPIC* grants to fund Microgrid research and demonstrations by California Energy Commission:
 - Demonstrate Business Case for Advanced Microgrids in Support of California's Energy and GHG Policies (\$50M)
 - Distribution System Modeling Tools to Evaluate Distributed Energy Resources (\$9M)
- CA Storage Mandate; Microgrid Roadmap

Puerto Rico

- Effort to integrate DER and microgrids supported by ARPA-E (DOE)
 - Determine policy and technology options
 - Build new tool to assess grid-integration of DER

THE END

Contact Information

Gonçalo Cardoso gfcardoso@lbl.gov

http://building-microgrid.lbl.gov/

