

Comparison of AC versus DC **Distribution in Commercial Building Nanogrids**

AC & DC Power Background

Research Objective

- ▶ research & demonstrate technical viability of DC building distribution focus on low (< 600) voltage DC
- in commercial buildings
- ▶ direct integration of renewable sources and batteries
- ▶ simulate and measure potential energy efficiency & economic benefits
- evaluate communication opportunities

Alternating Current

- ▶ the building power we're all accustomed to
- ▶ has huge advantage of easy voltage changes
- enables long distance transmission with local safety
- ▶ voltage and current cycles at fixed frequency
- when working well, energy is always being delivered.
- ▶ approach is closely related to rotating generators ▶ has many power quality problems, e.g., power factor
- ▶ has few advantages at end-use, but induction motors
- ▶ end-use rectification to DC common and increasingly efficient

Direct Current

- ▶ the vehicle power we're all accustomed to
- ▶ many efficient DC loads (LEDs, variable speed motors, etc.) ▶ many power sources (PV, batteries) also DC
- Ness losses and power quality issues with all DC distribution
- simpler systems should be cheaper, more reliable & resilient ▶ creates a favorable environment for PV integration & EVs
- ▶ EVs and heat pump heating/cooling are significant DC loads ▶ safety and other standards needed and a formidable barrier
- ▶ easy connection to electronics permits smart distribution

Analysis Approach

- new California residential buildings to be ZNE by 2020
 - all commercial buildings by 2030
- solar PV generation, batteries, and most loads natively DC many efficient DC devices should be encouraged
- less power quality problems & improved reliab
- islanding microgrid buildings facilitated by DC

Research Goal

- use Modelica simulations to determine efficiency improvements
- estimate economic benefits of DC distribution model medium size Los Angeles office and other buildings
- include realistic profiles for solar output and load
- use converter efficiency curves, and detailed battery and wiring models

- object oriented modeling language with GUI provided by Dymola
- popular for building, automotive, and other engineering simulation
- useful for complex systems that include mixed electrical, thermal, etc

Results

DOE Reference Building Model of Medium Office in Los Angeles, CA

Parametric Experiments

- solar Experiment baseline is amount of solar capacity needed to power a ZNE building
- battery experiment baseline is half the amount of battery capacity needed for a ZNE building to store all daily excess solar (= generation - load)

Efficiency Results

- 12% baseline efficiency savings with DC
- DC is more efficient with high solar and battery capacity

Loss Analysis

- AC building loss is dominated by the poor efficiency of load packaged rectifiers (wall adapters)
 AC buildings with lots of storage see loss in the battery inverter
- DC building loss dominated by the grid tie inver
- particularly heinous with high solar capacity and no storage (fourth pair of bars at left)
- both buildings suffer significant battery chemical loss

Techno-Economic Analysis

- results determined from market cost data, grid tariffs, and Monte-Carlo analysis
- first cost is higher for DC
- given the enormous efficiency savings, the payback period is less than a year
- end use costs, installation costs, and other soft costs not considered in techno-economic analysis

IBEW ZNE Building, San Leandro CA

The DC analysis model is used to scope the feasibility of DC distribution in a ZNE office building. The simulations are run with actual solar and load profile data, along with precise building wiring.

Future Research

Experimental and Field Testing

- experimentally estimate efficiency savings of identical AC vs. DC networks
- verify the savings of removing the rectification stage in various loads design and construct a DC microgrid, meter and measure the savings
- collaborate with DC demonstrations in Europe and Asia

Analysis and Modeling

- develop a generic DC efficiency modeling tool for commercial use
- improve the techno-economic analysis and create future projection models develop advanced control algorithms for load shedding in DC buildings
- study the non-energy benefits of DC for power quality, resiliency, etc.

Daniel Gerber, Vagelis Vossos, Wei Feng, Richard Brown, Aditya Khandekar, Bruce Nordman & Chris Marnay Lawrence Berkeley National Laboratory We thank U.S. DOE and CEC for supporting this work!

ABBREVIATIONS & ACRONYMS

CEC – California Energy Committion EV – electric vehicle GUI – graphical user interface LCC – life cycle cost U.S. DOE – U.S. Department of Energy