

Cooperative Control of DC Microgrid Using Average Per-Unit Current Estimator

Soumya Thomas, Shyam A. B., Soumya Ranjan Sahoo and Sandeep Anand Department of Electrical Engineering Indian Institute of Technology Kanpur, India

Objective

- Proportional current sharing on the basis of source power ratings.
- Low voltage regulation of source buses.
- Reduced communication network.
- Lesser data congestion in the communication network [1].
- Link failure resiliency.
- Easily scalable.

Proof for Local Averaging leading to Global Average

(8)

(3) and (5) represented in vector form as below, which implies

$$\dot{\mathbf{d}} = -\mathbf{G}(\bar{\mathbf{i}}^{p.u.} - \mathbf{i}^{p.u.})$$
 (6) $[\mathbf{I} - (\mathcal{D} + \mathbf{I})^{-1}(\mathcal{A} + \mathbf{I})] = \mathbf{0}$ (9)

 $\overline{\mathbf{i}}^{\rho.u.} = (\mathcal{D} + \mathbf{I})^{-1} (\mathcal{A} + \mathbf{I}) \mathbf{i}^{\rho.u.}$

Then (7) becomes,

$$\overline{\mathbf{i}}_{ss}^{p.u.} = (\mathcal{D} + \mathbf{I})^{-1} (\mathcal{A} + \mathbf{I}) \overline{\mathbf{i}}_{ss}^{p.u.}$$

For j^{th} row, both $(\mathcal{D} + \mathbf{I})$ and $(\mathcal{A} + \mathbf{I})$ have row sum where \mathcal{D} and \mathcal{A} are the degree and adjacency as $\sum_{i=1}^{N} a_{ii} + 1$. Thus, $[\mathbf{I} - (\mathcal{D} + \mathbf{I})^{-1}(\mathcal{A} + \mathbf{I})]$ has matrices. At steady state, from (6), $\mathbf{i}^{p.u.} = \mathbf{\bar{i}}^{p.u.}$ its row sum = 0, which implies 1 is a right eigen vector of $[I - (D + I)^{-1}(A + I)]$. Hence at steady state p.u currents of all converters converge to the same value.

Proposed Technique

Conventional droop controller:

$$V_j^{ref} = V_j^0 - d_j i_j^{p.u.} i_j^{rated}.$$

(1)

(2)

(5)

Proposed droop controller:

$$V_j^{ref} = V_j^0 + \Delta V_j - d_j i_j^{p.u.} i_j^{rated}$$

where,

$$\dot{d}_{j} = -g_{j}(\bar{i}_{j}^{p.u.} - i_{j}^{p.u.})$$
 (3)
 $\Delta v_{j} = k_{j}\bar{i}_{j}^{p.u.}i_{j}^{rated}$ [2]. (4)

Locally estimated average p.u. current:

System used for Simulation

Fig. 3: DC microgrid system used for simulation.

Time (s)	R_1	R_2	R_3	R_4	R_5
0.6 < t < 1	6Ω	6Ω	6.5 Ω	6.25 Ω	6 Ω
t > 1	4.75 Ω	6Ω	6.5 Ω	6.25 Ω	2.4 Ω

Table 1: Load distribution with time.

Fig. 4: Communication graph used for simulation.

Parameter	Value	
Source voltage rating	400 V	
Source power rating	50 kW	
Cable resistance	$205 m\Omega$	
Cable inductance	463 μ H	
Load capacitor	1000 μF	
Initial droop value	1.9 Ω	

 Table 2: System parameters.

Current Waveforms

Voltage Waveforms

Droop characteristics with proposed con-Fig. 1: troller.

Local Average Currents

Conclusion

Proposed a cooperative control based secondary controller with reduced communication, having steady state responses identical to a secondary controller with full communication.

Fig. 2: Schematic of the proposed secondary controller.

References

- V. Nasirian, A. Davoudi, F. L. Lewis, and J. M. Guerrero, "Distributed adaptive droop control for dc distribution systems," IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 944-956, Dec. 2014.
- S. Anand, B. G. Fernandes, and J. M. Guerrero, "Dis-[2] tributed control to ensure proportional load sharing and improve voltage regulation in low-voltage dc microgrids," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1900-1913, Apr. 2013.
- S. Thomas, S. Islam, S. R. Sahoo, and S. Anand, [3] "Distributed secondary control with reduced communication in low-voltage dc microgrid," 2016 10th Int. Conf Compatibility, Power Electron. Power Eng. (CPE-*POWERENG*), Bydgoszcz, pp. 126–131, 2016.
- S. Thomas, "Cooperative control for low-voltage dc mi-[4] crogrid," Master's Thesis, Indian institute of Technology Kanpur, Jun. 2016.