Towards Holistic Testing

Development of a Microgrid Controller

Symposium on Microgrids – 2017 | Newcastle, Australia

Maria Nuschke*
Newcastle | November 29-30, 2017

Co-Authors Ron Brandl*

Juan Montoya*

Diana Strauß-Mincu*,#

^{*} Fraunhofer Institute of Wind Energy and Energy System Technology

[#] European Distributed Energy Resources Laboratories

Contents

- 1. Introduction
- 2. Innovative Testing Chain
- 3. Development procedure of a Microgrid Controller
- 4. Summary of Performed Investigations

1. Introduction

Holistic Testing – Motivation / Challenges

Motivation

- Pure simulations representing only simplified and user-assumed results
- Pure hardware testing is too complex and costly at innovation and research level
- Current testing capability is limited:
 - Component testing difficulties in holistic system testing
 - Testing at rigid grid connections no influence between device-under-test and network dynamics
 - Limitation of high power, missing components, etc.

Objectives

- Development and application of an advanced test chain for smart grid components
- Smoothen transitions between simulation, testing and validation
- Closing the gap between simulation, laboratory and field testing

2. Innovative Testing Chain

Stages of the Testing Chain

1. Simulation-only studies

 Simulation of all required components of a new idea/approach

2. Controller Hardware-in-the-Loop

 Real-time simulation of all required components connected to a hardware controller

3. Power Hardware-in-the-Loop

 Replacement of simulated devices by hardware components and real-time simulation of remaining components

4. Field Test (Pure Hardware)

 Field installations with additional monitoring tools

Overview

Task:

- Restoration of a purely inverter based Microgrid
- Grid control and operation control in islanding operation
- Resynchronization
- Components in the Microgrid:
 - Grid forming inverter with PV and battery (VSI),
 - Aggregated load, 100kVA
 - Commercial available battery inverter (CSI)
 - Transformers, lines, circuit breaker

Modelling

Offline-Test / Software-in-the-Loop

Modelling Plant and MGC Offline-Test (SiL) Online-Test I (Controller-HiL)

Benefits:

- Implementation of all required components and control strategies
- Fast execution of various investigations (short-/long-term aspects)
- Flexibility of investigations and scenarios

Offline-Test / Software-in-the-Loop

Modelling Plant and MGC Offline-Test (SiL) Online-Test I (Controller-HiL)

Demonstration
(Lab test)

Simulation results (sunny day, summer load)

Online-Test / Controller Hardware-in-the-Loop

Modelling
Plant and MGC

Offline-Test (SiL)

Online-Test I (Controller-HiL)

Online-Test I (Power-HiL)

Demonstration (Lab test)

Benefits:

- Transfer of the Microgrid Controller as Deviceunder-Test (DuT) onto real hardware
- Consideration of all dynamics and interfaces of the DuT
- Testing of controller performance and communication
- Comparative results for stage 1

Online-Test / Controller Hardware-in-the-Loop

Modelling Plant and MGC

Offline-Test (SiL)

Online-Test I (Controller-HiL)

host PC

and host PC

Online-Test / Controller Hardware-in-the-Loop

Online-Test / Power Hardware-in-the-Loop

Modelling
Plant and MGC

Offline-Test (SiL)

Online-Test I (Controller-HiL)

Online-Test II
(Power-HiL)

Demonstration (Lab test)

Benefits:

- Partial replacement of simulated models by hardware
- Verification of communication, DuT and power hardware operation and harmonized performance
- Investigation of different scenarios

Online-Test / Power Hardware-in-the-Loop

Modelling
Plant and MGC

Offline-Test (SiL)

Online-Test I (Controller-HiL)

Online-Test II (Power-HiL)

Demonstration (Lab test)

Control room with LAN access to all components

Online-Test / Power Hardware-in-the-Loop

Modelling
Plant and MGC

Offline-Test (SiL)

Online-Test I (Controller-HiL)

Online-Test II (Power-HiL)

Demonstration (Lab test)

RTDS system with power amplifiers

Online-Test / Power Hardware-in-the-Loop

Modelling
Plant and MGC

Offline-Test (SiL)

Online-Test I (Controller-HiL)

Online-Test II (Power-HiL)

Demonstration (Lab test)

Battery inverter with transformer station and battery container

Demonstration / Field Test

Modelling
Plant and MGC

Offline-Test (SiL)

Online-Test I (Controller-HiL)

Online-Test II
(Power-HiL)

Demonstration (Lab test)

4. Summary of Performed Investigations

Conclusions and Overview

- New testing technologies support the validation of current and prospective research
 - Integrates realistic power system conditions in lab testing
 - Enables holistic testing of prototypes and innovative methods and technologies
- Proof of Concept
 - Support during the design of a Microgrid Controller
 - Step by step testing for controller development
 - Validation of the idea/approach by iterative replacement of simulation models by real hardware
- Innovate testing chains de-risk field tests by enabling reality-close testing in controllable/safe laboratory environments

Thanks for your attention!

M.Eng. Maria Nuschke

Division Systems Engineering and Distribution Grids Fraunhofer Institute for Wind Energy and Energy System Technology IWES

Königstor 59 | 34119 Kassel / Germany Phone +49 561 7294-257 maria.nuschke@iwes.fraunhofer.de

Acknowledgement

We acknowledge the support of our work by the German Federal Ministry for Economic Affairs and Energy (BMWi)and the Projekträger Jülich within the project "NETZ:KRAFT: Netzwiederaufbau unter Berücksichtigung zukünftiger Kraftwerkstrukturen" (FKZ 0325776A).

Acknowledgement

We acknowledge the support by the European Community's Horizon 2020 Program (H2020/2014-2020) under project "ERIGrid: European Research Infrastructure supporting Smart Grid Systems Technology Development, Validation and Roll Out" (Grant Agreement No. 654113).

