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• power sector history & paradigms
• microgrid definition
• unfinished business: 

heterogeneous PQR
• case for DC
• building modeling
• results

Outline
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Central Paradigm Limitations
* fire risk
*conflicting policy objectives

generation competition (equipment stress, volatile markets) 
connection of intermittent renewables

* resiliency, security, … (inherently insecure networks)

* infrastructure interdependency

* environmental constraints (carbon, water, etc.)

* load growth? (transportation electrification, heating, …)

* centralized generation heat loss 

* reliability is costly for a fundamentally insecure system

* restricted expansion of centralized system

* DC sources and sinks, heterogeneous power quality

* plug-in electric vehicles a potential game changer

* grid paradigm vs. internet paradigm
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nanogrid
“n�grid?”

true	microgrid/
facility	island
“μ�grid?”

community	/	utility	microgrid/
area	EPS	island	/	EID	/	milligrid
“m�grid?”

Megagrid “M�grid?”
macrogrid /	utility	grid	/	legacy	grid

Future Landscape
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Adopter Motivations 
(mostly true microgrids i.e. μgrids)

• reduce direct cost of meeting 
energy service requirements

• reduce indirect costs 
(emissions, noise, …) /
(increase renewable fraction)

• reliability & resilience
• market opportunities 

(aggregation, DR,
AS,…) “buffering”

• independence & surety 
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CIGRÉ C6.22 Working Group, U.S. DOE, & 
NYSERDA Microgrid Definitions

Conseil International des Grandes Réseaux Électriques International 
Council on Large Electric Systems

Microgrids are electricity distribution systems containing loads and distributed energy 
resources, (such as distributed generators, storage devices, or controllable loads) that 
can be operated in a controlled, coordinated way either while connected to the main 
power network or while islanded.

U.S.Department of Energy Microgrid Exchange Group
A microgrid is a group of interconnected loads and distributed energy resources within 

clearly defined electrical boundaries that acts as a single controllable entity with 
respect to the grid. A microgrid can connect and disconnect from the grid to enable it 
to operate in both grid-connected or island-mode. A remote microgrid is a variation of a 
microgrid that operates in islanded conditions. 

New York State Energy Research and Development Authority
Microgrids are local energy networks that are able to separate from the larger electrical 

grid during extreme weather events or emergencies, providing power to individual customers 
and crucial public services such as hospitals, first responders, and water treatment 
facilities.
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Case for DC

• DC systems predate AC, war of the currents, & familiar in other applications
• high voltage transmission over huge distances by AC still mostly holds
• revolution has been in power electronics that can switch AC ⇔DC efficiently, 

between DC voltages, and control power quality
• increasing building DC sources (SOFCs, PV, etc.), storage (batteries)
• also, loads (electronics, lighting, variable speed drives, etc.), esp. efficient ones
• electric vehicles notable as both a DC source, load, and storage!
• estimated ~5-15% DC electricity savings in buildings but big literature range
• other benefits from better device control & renewable penetration
• reliability, resilience, power quality, renewables, EV charging, etc. drive adoption
• alternative energy distribution is often DC, e.g. POE
• creating a favorable environment for efficient DC devices has other benefits
• DC a rare opportunity for a discontinuous drop in electricity usage
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electricity	savings	from	DC	power	distribution
● Estimates	vary	depending	on	presence	of	battery	storage,	converter	

efficiencies,	and	study	type	(modeled	vs.	experimental):

1:Backhaus et al (2015); 2:Denkenberger et al (2012); 3:Vossos et al (2014); 4:Willems & Aerts (2014); 5:Fregosi et al (2015); 
6:Noritake et al (20114); 7:Weiss et al (2014)

Study	Type Scenario Electricity	Savings

Modeling

Building	with	Battery	Storage 2%–3%	[1]

All-DC	building	(res.	and	com.)
No	battery	storage

5%	residential
8%	commercial	[2]

All-DC	Residential	Building 5%	w/o	battery
14%	w/	battery	[3]

All-DC	Residential	Building 5.0%	conventional	building
7.5%	smart	bldg.	(PV-load	match)	

[4]

Experimental
LED	DC	system	(no	battery) 6%–8%	(modeled)	[5]

All-DC	office	building	(battery,	
EV)

4.2%	[6]

All-DC	Building	(battery,	EV) 2.7%–5.5%	daily	energy	savings	[7]

Literature Review

LBL
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Research Goal
• find any efficiency benefit from DC distribution in reference buildings

• an L.A. office building modeled using Modelica (Dymola)
• medium sized L.A. office building (50 m X 33 m, 3 floors, »5000 m2 occupied)
• 637 MWh annual electricity use, with a 176 kW peak (41% CF)

• 380 Vdc backbone and 48 Vdc vs. 12o/208 Vac
• EMerge Alliance is 380 & 24 Vdc, POE and traditional telecom is 48 Vdc

• realistic reference building loads (E+) and PV output (PV-Watts)

• accurately representing conversion efficiency, esp. part-load effects

• simple sizing and operations with all DC loads and wiring losses
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• all loads are DC or have internal DC stage
• AC building: loads are native/internal DC

– All loads require load-packaged rectifier
• DC building: loads are direct DC

– Lighting requires LED driver
– HVAC (VFD motors) and plug loads assumed to be 

able to interface directly with DC distribution lines
• load profiles are from Energy Plus
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• Pexcess = Psolar – Pload
• charge battery when excess Pexcess > 0
• discharge battery when Pexcess < 0
• algorithm does not consider tariffs or multistage charging

Battery Model
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• model resistive losses as lumped resistance
• wire gauge from expected load ampacity
• wire length modeled by geometric methods

PLN
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Wiring Model
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DC Distribution
1. maximum power point tracking (MPPT) inverter
2. battery inverter
3. load packaged rectifier (all loads are internally DC)
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AC Distribution
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• object oriented modeling language
• useful for complex systems that span electrical, mechanical, etc. 

domains
• GUI provided by Dymola or Open Modelica
• popular for building and automotive simulations

Modelica
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• converters represent the most significant power loss
• loss is based on efficiency curves obtained from manufacturer product data
• power quality is not modeled in this study

DC Product
Weighted 
Efficiency

Power Optimizer 99.4%

MPPT Chg. Controller 98.5%

DC-DC Transformer 97.6%

Grid Tie Inverter 96.6%

DC LED Driver 95.6%

AC Product
Weighted 
Efficiency

String Inverter 96.0%

Battery Inverter 92.1%

Low Power Rectifier 89.9%

High Power Rectifier 90.8%

AC LED Driver 90.2%

Converter Models
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• efficiency for annual simulation: 1 – (total Loss / total Load)
• DC efficiency increases with PV and battery capacities
• baseline parameter values

– 390 kW solar capacity (array required for ZNE)
– 1380 kW-h battery capacity (50% of requirement to store all 

excess solar on sunniest day)

baseline baseline

Efficiency Results
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Loss Analysis

• losses are significant and generally increase with system size

• AC losses dominated by load packaged rectifiers and battery inverter

• DC building losses dominated by the grid tie inverter

• both buildings suffer battery chemical loss



©Chris Marnay  -+- AC vs. DC Building Electricity Distribution Newcastle, Australia -+- 30 November 201726

Example Techno-Economic Analysis
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