Smart Village Microgrids: Early Experience in Design & Implementation

Daniel Zimmerle, Colorado State University
Observations

1. Field and laboratory work indicates that little technology development is required for core power system deployment – especially PV-battery systems.

2. Significant differences exist between small subsistence-agriculture villages and larger village microgrids: Same assumptions don’t work.

3. A tradeoff between reliability and LCOE may be possible ... but human factors have not been properly characterized.

Workers in development call off-grid microgrids “minigrids” to distinguish them from other system types that are not true microgrids.
Example system by MeshPower and CSU

- AC/DC system, PV-battery-generator

Accomplished using:

- Stock inverter equipped with genset pass-through & charge controller
- Lighting on MeshPower DC circuits
- Controls from MeshPower customer system
1 Plenty to do … but not usual EE areas …

• Controls:
 • Power equipment vendors do not utilize standard control interfaces …
 • Locks into single-vendor … or requires code customization

• Cost down:
 • Integration of “normally separate” components reduce cost
 • Protection + metering + power control
 • Safe & simple LV distribution

• Appliances that fit customers’ needs
 • Low-cost, low-voltage (24-60V) DC appliances
 • Plug standards!
Villages Studied: Typical Example

Two views of one village utilized for design studies:
Left: Houses and designed distribution system.
Below: Village boundary highlighted.

158 connected households / 32 unconnected / 3.5 km distribution
2: Cost Model for Small Villages

- Optimizations commonly state assume costs as % of total cost
- Reality: Distribution costs are large fraction of total capital and not decreasing while PV and battery costs decrease

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Unit Cost</th>
<th>Units</th>
<th>Number of Units</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A Line</td>
<td>$2.51</td>
<td>m</td>
<td>1539</td>
<td>$3,863</td>
</tr>
<tr>
<td>Type B Line</td>
<td>$1.52</td>
<td>m</td>
<td>2055</td>
<td>$3,124</td>
</tr>
<tr>
<td>HH Connect Line</td>
<td>$1.52</td>
<td>m</td>
<td>2788</td>
<td>$4,238</td>
</tr>
<tr>
<td>Pole & Hardware</td>
<td>$66.00</td>
<td>pole</td>
<td>119</td>
<td>$7,854</td>
</tr>
<tr>
<td>Meters</td>
<td>$65.00</td>
<td>connection</td>
<td>158</td>
<td>$10,270</td>
</tr>
<tr>
<td>HH Service Entry</td>
<td>$31.50</td>
<td>connection</td>
<td>158</td>
<td>$4,977</td>
</tr>
<tr>
<td>HH Wiring</td>
<td>$50.00</td>
<td>connection</td>
<td>158</td>
<td>$7,900</td>
</tr>
<tr>
<td>Meter base stn</td>
<td>$1.596</td>
<td>village</td>
<td>1</td>
<td>$1,596</td>
</tr>
<tr>
<td>Meter totalizer</td>
<td>$250</td>
<td>branch line</td>
<td>10</td>
<td>$2,500</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>$46,323</td>
</tr>
</tbody>
</table>
Example using Cost-Reliability Tradeoff

Assume distribution fraction of system cost
- Centered reliability & LCOE
- Conclusion: Can scale system on reliability + LCOE

Model distribution costs independently
- Reliability curves not aligned with LCOE
- Virtually no cost penalty to be “slightly larger” @ higher reliability
- Conclusion: Grow load to reduce cost .. reducing system size @ reasonably reliability has virtually no impact

Focus on “Productive Use”

• Field experience & modeling indicate that:
 1. Costs will not go down without increase in economic activity → drive load growth
 • Productive uses: Milling, refrigeration, welding, etc.
 2. Growing village economy requires “grid-similar” power
 • Solar home systems can’t provide enough concentrated power for productive uses.
 • Individual systems get expensive fast
 3. Need minigrid to provide ‘grid similar’ power where needed

• Next:
 • Focusing on productive uses & information access in villages
 • Human factors!
 • Judicious integration of multiple functions into single components
Thank You

Contact

Daniel Zimmerle, Sr. Research Associate, Energy Institute
Dan.Zimmerle@colostate.edu | 970 581 9945

@CSUenergy

www.facebook.com/csuenergyinstitute

Energy.ColoState.edu