Grid-Forming Inverters in Microgrids

Axel Seibel, Peter Unruh Department: Converters and Drive Technology

Contents

- Introduction
- Improving the control of grid-forming inverters
 - SelfSync
 - Improving SelfSync
 - Robust control
- Practical tests
- Conclusion

Grid-Forming Inverters in Microgrids Introduction

- "Grid-forming" means that an operating device participates actively on forming the grid voltage.
- Grid-forming inverters act as voltage sources.

Grid-Forming Inverters in Microgrids Introduction

• A high penetration of grid-forming inverters is inherently system stabilizing.

This approach can cover:

- Virtual inertia
- Uninterruptable power supply
- Black start capability...

Grid-Forming Inverters in Microgrids Basic Idea for grid forming inverters

Transfer droops of power plant behaviour with synchronous generators to inverters

Grid-Forming Inverters in Microgrids Control – SelfSync[™]

- SelfSync[™] is a technique that based on conventionel droops (f(P)- respectively U(Q)-characteristic)
- An additional angle feedforward improves stability and the dynamic behavior

Grid-Forming Inverters in Microgrids Control – SelfSync[™]

- Transfer droops of power plants with synchronous generators to inverters
- Represent the "Best of" behaviour of a synchronous generator in the control structure
- + working well and stable in well planned microgrids (industrial application)
- Line resistance is ignored:
 Quality criteria (performance) of control deteriorates

SelfSync™

Grid-Forming Inverters in Microgrids Control – challenge 20xx

Wishes for the future of energy production (20xx):

- 100% renewables in all voltage levels
- Arbitrary spatial distribution of grid-forming inverters
- Stable control in all voltage levels

Provide a small contribution! Handicaps for the future of energy production (20xx):

- Storage of energy
- Stability of the electrical energy system
- Market (investments, politics, industrial interests,)

Grid-Forming Inverters in Microgrids What happen at low voltage level?

- High voltage (HV) cable has X_L/R_L ratio of appr. 7 (mainly inductive)
- Low voltage (LV) cable has a X_L/R_L ratio of appr. 2

Grid-Forming Inverters in Microgrids Control – challenge

$$P = \frac{L_k s + R_k}{(L_k s + R_k)^2 + (\omega L_k)^2} (U^2 - UE_0 \cos \delta) - \frac{\omega L_k}{(L_k s + R_k)^2 + (\omega L_k)^2} UE_0 \sin \delta$$
$$Q = \frac{\omega L_k}{(L_k s + R_k)^2 + (\omega L_k)^2} (U^2 - UE_0 \cos \delta) + \frac{L_k s + R_k}{(L_k s + R_k)^2 + (\omega L_k)^2} UE_0 \sin \delta$$

Difficulty: distribution grid

- angle/frequency deviation results in reactive power flow.
- Arbitrary spatial distribution

Grid-Forming Inverters in Microgrids Control – Improving SelfSync

Feedback matrix **F**

- k_{p} , k_{q} reflect the droops
- angle feedforward: improve stability and transient behavior (k_p', k_q')

$$k_p = \Delta f / P_{max}$$
 $k_q = \Delta U / Q_{max}$

Grid-Forming Inverters in Microgrids Improving SelfSync - choice of the parameters k_p', k_a'

With a higher resistive grid impedance the parameter k_q ' gets more relevance (here $L_k = 1 \text{ mH}$, $R_k = 0.4 \Omega$).

Grid-Forming Inverters in Microgrids Comparing grid parameters to choose k_p', k_q'

Different $L_k = xx \text{ mH } (R_k = 0.4 \Omega)$

Grid-Forming Inverters in Microgrids Comparing grid parameters to choose k_p', k_q'

Different $L_k = xx \text{ mH} (R_k = 0.4 \Omega)$

Grid-Forming Inverters in Microgrids Comparing grid parameters to choose k_p', k_a'

Different $L_k = xx \text{ mH} (R_k = 0.4 \Omega)$

Grid-Forming Inverters in Microgrids Experimental results – voltage step

- Voltage step from 230 V_{eff} to 245 V_{eff} and back
- Grid impedance (0.345 Ω , filter)
- Smooth settling with double angle feedforward

Grid-Forming Inverters in Microgrids Experimental results – frequency step

- Frequency step from 50Hz to 49.5Hz and back
- Smooth settling
- Instantaneous reaction

Grid-Forming Inverters in Microgrids Conclusion

- Grid-forming inverters are inherently system stabilizing with regard to the power grid control
- Improved control behavior due to the angle feedforward
- For an optimal controller design an **impedance estimation tool** was applied

Outlook:

Actual we are designing a robust control for grid forming inverters This will be the next story!

Contact

Axel Seibel Königstor 59 D-34119 Kassel axel.seibel@iwes.fraunhofer.de

