Newcastle 2017 Symposium on Microgrids

Construction of IoT-based
Campus Microgrid in Seoul
National University

Nov. 29 2017

Dongjun Won, Inha University

IoT-based Campus MG Project Overview

SNU Campus MG Demonstration Project Overview

Project Budget: 15.7 million USD (Government 10.3M, Private 5.4M)

Project Period: 2015. 06 ~ 2019. 05 (for 4 years)

Project Site: Seoul National University

Project Goal:

Development of a customized SNU Campus MG model to provide

- 1) 4 hours islanding operation to critical loads
- 2) 20% peak load reduction and energy cost saving by cell MG model
- 3) Consumer participative energy-saving by IoT based Bigdata platform
- 4) Multi-Microgrid operation with different cell types
 - * SNU: Seoul National University
 - * MG: Microgrid

LG Electronics

Leading a New Energy Industry Era

VARA)

es in Seoul National University

ENCORED

Demonstration Plan

Achieve early commercialization by 2 years of development and 2 years of demonstration

- Derive best demonstration strategy through in-depth analysis of campus system
- Analysis of the effect of the demonstration results and confirmation of results by external verification organization

2015~2017

2017~2018

2018~2019

After Completion of Project

2 Year Development 1 Year
Demonstration
Internal
Verification

1 Year
Demonstration
External
Verification

Jun' 2019 Completion of Project

Business Association

Design and development of Element Technology

Demonstration
Design and
Construction/
Commissioning

MOU for transfer of ownership and operations to SNU Sign contract for transfer of ownership and maintenance

SNU
Step-by-step
Commercialization

SNU Campus MG Conceptual Model

Cell region: Efficient energy operation Cloud region: Providing variety of IoT based services Energy Big Data App Ecosystem Open API KMA Climate Data/KEPCO iSmart xterna Cloud Based Data IoT open/scalable platform Data Link 61850/61970/61968 DRAS* Open ADR 2.0 Architecture Trading MG EMS MoMC' Premium MG Cell Normal MG Cell Virtual Cell **Critical Load** Optimal Operation Monitored Optimal Generation High-quality For each Load/ Loads via Control/DR **■** Uninterruptible Generation Type IoT sensor Allocation -Power Supply IoT Sensor Power/Temp. and Humidity/ CO2/Occupancy Data Campus Microgrid MoMC Microgrid of Microgrid Center DRAS Demand Response Automation System

Development of Each Type Building Model

Model considering energy consumption characteristics and energy saving methods

- Develop accurate model (Lecture, Research, Hospital, Dormitory, and etc.) for each building types
- The accurate model will be designed by enhanced time-spatial resolution from IoT-based big data technology.

Build and secure accurate model

through time and space resolution improvement by IoT based Big Data technology Standardization of energy-saving technologies and engineering methods for

Reuse in Future Projects

SNU Campus MG Characteristics

Lego style Campus MG Customized Model taking flexible configuration change depending on customer demand

Lego-style Campus Microgrid **Customized Solution**

Campus Model Development

Build campus model according to different energy consumption characteristics of campus buildings

IoT based Cell Platform Development

Platform for combining the required models through the Open API

Flexible solution by model combination

Cell

IoT Based Cell Platform + Campus Model

Minimum sales unit of customized solutions

Cell Solution Type

Cell : IoT-based Cell Platform + Campus building model for each type ⇒ Minimum unit of customized solutions

• Cell divided into 3 categories based on stability/cost

Premium MG Cell

- Cell model for critical loads (research buildings, hospitals, etc.) requiring islanding operation and power quality
- 4 hours islanding operation and 20% energy savings

Normal MG Cell

- Cell model for general loads (lecture halls, dormitories etc.) with DGs considering energy efficiency
- 20% saving of energy costs by peak load reduction

Virtual Cell

- Cell model for general loads without DGs that provides energy saving service based on the analysis of information from IoT system
- 10% energy saving through IoT based user participative energy service platform

Microgrid of Microgrid Center (MoMC)

MoMC HMI Layout

- Overall SNU campus monitoring and control (over 225 buildings)
- Hierarchy: MoMC MG Cell EMS BEMS

Campus Microgrid Power System Network

One line diagram

• Premium Cell

- ESS for islanding: 1MW/1MWh

- Emergency Gen. : 2MW

- ESS for energy saving: 50kW/100kWh,

50kW/150kWh

- PV: 80kW

• Normal Cell #1

· Energy saving

- ESS: 2 * 250kW/500kWh

- PV: 60kW

• Normal Cell #2

· Energy saving

- ESS: 50kW/90kWh

- PV: 50kW

Premium Cell Islanding Operation

Normal Cell Energy Saving

Normal Cell Equipments : IoT Sensors, ESS, MG-EMS

Normal Cell IoT Sensors

- Temperature, Humidity, CO₂, Presence etc.
- Mesh network

ESS (PCS +Li-ion Battery)

Normal Cell Energy Saving

Analysis on IoT sensor data and energy data

- 3D Visualization of IoT Sensor data
- Mapping with Geographic data

• By combining energy data with IoT data, useful information on energy consumption come out.

Electric Vehicle C-EMS

V2G Service Demonstration

• EV Cell EMS is connected to MoMC and manages the charging stations

Virtual Cell Energy Saving

IoT Power Sensor

- IoT power sensor: Premium cell, Normal cell, Virtual cell
- High resolution: 1 sec. power monitoring

Product

Mapping

Installation

Testing

Virtual Cell Energy Saving

Big data Platform Development

- Big data platform by ENCORED
 - Energy data visualization and analysis
 - Mobile application for customer engagement

Virtual Cell Energy Saving

Customer Participation

- Campus people participate in energy saving
 - > Test site : Graduate student laboratory
 - Provide energy information and rewards

Test site

Results

Campus Microgrid Design Tool

CMTool (Campus Microgrid optimal design Tool)

CMTool

- Performance Analysis Model
- **Economic Analysis Model**
- Financial Analysis Model

Economic Analysis Results

	Case 1: Base case (Grid-only)	Case 2: Threshold dispatch	Case 3: Peak shaving dispatch	Case 4: MGTool advanced dispatch
NPC	3,181,600.00	3,339,270.00	3,051,800.15	3,00,230.00
Annual energy charge (\$/year)	177,790.45	166,380.43	173,054.93	163,112.36
Annual demand charge (\$/year)	54,456.00	20,733.56	20,207.22	13,879.00
Annual electricity savings (\$/year)	-	49,881	61,843	70,207.00

Metric	Threshold	Peak shaving	MGTool optimal
Net present value (\$)	-54,238.00	-30,238.00	16,374
Payback period (years)	NA	10.9	8.9
LCOE (\$/kWh)	0.1003	0.089	0.0871
Net capital cost (\$)	380,000	500,000.00	612,500

Conclusions

Develop the most economic solutions and sustainable business models

- Characteristics of Campus Microgrid
 - Single owned microgrid
 - High possibility for energy saving
 - Various load types
- Purpose of SNU campus microgrid
 - > 4 hours islanding operation to critical loads
 - > 20% peak load reduction and energy cost saving by cell MG model
 - Consumer participative energy-saving by IoT based Bigdata platform
 - Multi-Microgrid operation with different cell types
- Business model development
 - Premium cell, normal cell, virtual cell model
 - > Lego style campus MG model

