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Why Microgrid
• Improve operational security & reliability (SS / transient) 

• Adoption of renewables to reduce environmental impact and 
improve self sustainability, reduce dependencies of fuel supply

• Especially beneficial for remote and critical infrastructures (eg. 
hospitals, airports, military applications)
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Image:	Dillon	Thompson	Design



Microgrid Design Dilemma
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v		Sustainability	vs.	system	stability
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Microgrid Design Dilemma
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>		Sustainability	vs.	system	stability

v		More	effective	power	from	renewables	vs.	power	quality
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Microgrid Design Dilemma
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>		Sustainability	vs.	system	stability

>		More	effective	power	from	renewables	vs.	power	quality

v		Reliability	vs.	economy

5Graph	extracted	from:	Mosteller R.,	Budget-constrained	Power	System	Reliability	Optimization



Improving Power Reliability

• Modification or New Design

• Power availability requirements

• Renewables intermittency and desired penetration

• Operation mode (islanded, grid-connected or both)

v	 Basic	Design	Considerations
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Improving Power Reliability

• ‘Strength’/‘rigidity’ of microgrid
– Electrical inertia

• Network protection requirements
– Bidirectional power flow requires bidirectional protection consideration
– Non-radial network further complicate the problem

• Load demand & type 

• Placement / Sizing of ESS & required functionalities

>		Basic	Design	Considerations

v	 Further	Design	Considerations
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Improving Power Reliability

• Impact of geographic and temporal characteristics of the 
renewables on the scheduling & dynamic behavior

• Interconnection of multiple microgrids

>		Basic	Design	Considerations

>		Further	Design	Considerations

v Operation	Considerations
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Case Study

HIGH ADOPTION OF RENEWABLES IN A TRADITIONAL DISTRIBUTION
LEVEL MICROGRID



Case 
Network

• Distribution	level
(6.6	kV	– 400	V)

• Radial	network	

• Single	Point	of	
Failure

• Critical	/	Non-
critical	Loads

• Modelled	in	
PowerFactory
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Design Requirements
• High reliability and resiliency against internal and external failures

– Unplanned islanding
– Faults on microgrid network
– Potential communication failure

• Integrate as much PV as possible

• Ensure system remains stable 

• Minimise fuel cost during islanded scenario
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Network 
Modification

• PV	Installation

• Loop	Cable	
Installation

• LV	DG	Installation

• ESS	Installation

• Adjacent	MG	
Cable	Installation

• Distributed	
control	
architecture
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PV Penetration Study
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PV Penetration Study (Islanded)
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Component Failure Rate
Component Failure	Rate,	λ"#$%& (1/y) MTTR	(h)

Cable	(LV	/	HV) 0.02670	/	0.02017 7.60	/	5.13

Switchgear	(LV	/	HV) 0.00949	/	0.01794 7.29	/	2.27

DGs 0.58269 25.74

Inverters 0.00482 26.00

Failure	(f)
The	termination	of	the	ability	of	a	component/system	to	perform	a	required	function

Failure	rate	(λ)
Arithmetic	average	failure	per	unit	exposure	time

λ'()%& =
+,-./012
+321.45

or	λ"#$%& =
+,-./012

+321.45∗789:

Mean	Time	to	Repair	(MTTR)
Total	downtime	for	unscheduled	maintenance	(excluding	logistics	time)	for	a	given	period

𝑀𝑇𝑇𝑅 =
𝑅>(?@ABC#
𝑇D$BE)%#

IEEE	Standard	493-2007 15



Power Security 
Improvement

SAIFI SAIDI

Base 0.028813 0.181

Loop 0.021437 0.147

ESS 0.009490 0.069

SYSTEM AVERAGE INTERRUPTION FREQUENCY INDEX
= ∑ +(A$E	H(.	(D	J)&A(C#%	K@A#%%)LA#>�

�
+(A$E	H(.	(D	J)&A(C#%&	N#%O#>

SYSTEM AVERAGE INTERRUPTION DURATION INDEX
= ∑ J)&A(C#%	PB@)A#&	(D	K@A#%%)LAB(@�

�
+(A$E	H(.	(D	J)&A(C#%&	N#%O#>

IEEE	Standard	1366
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Seamless Unplanned Islanding
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• Total	Load	
(1.44	MVA	@	0.92	pf)
– 0.50	MVA		@	0.95	pf
– 0.20	MVA		@	0.85	pf
– 0.25	MVA		@	0.95	pf
– 0.50	MVA		@	0.90	pf

• Diesel	Generator
– 2	x	1	MVA	@	0.80	pf

• PV	Penetration	Test
– 0.3	MWp

(18.75%	Penetration)
– 1.5	MWp

(93.75%	Penetration)

PV Penetration Study
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*Penetration	is	defined	as	ratio	of	installed	
PV	capacity	to	DG	rating



Power Quality Analysis
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Increasing PV Penetration

• Network Stability:
– Introduced network instability (frequency deviations)
– Constant ramping of DGs
– Deterioration of power factor at PCC and DG substation
– Voltage rise during low loading

• Protection:
– Change in flow of power in the network (due to PV and network topology 

changes)
– Disparity between available fault current in grid-connected and islanded 

mode & changes in fault current flow

Problems	Faced
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• Total	Load	
(1.44	MVA	@	0.92	pf)
– 0.50	MVA		@	0.95	pf
– 0.20	MVA		@	0.85	pf
– 0.25	MVA		@	0.95	pf
– 0.50	MVA		@	0.90	pf

• Diesel	Generator
– 2	x	1	MVA	@	0.80	pf

• ESS
– 2	MVA,	1	MWh

• PV	Penetration	Test
– 1.5	MWp

(57.69%	Penetration)
– 2.7	MWp

(103.84%	Penetration)
– 3.3	MWp

(126.92%	Penetration)

PV Penetration Study (ESS)

*Penetration	is	defined	as	ratio	of	installed	
PV	capacity	to	DG	rating
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Power Quality Analysis 
with ESS
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Issues
• Bi-directional	&	multiple	

power	flow

• Changes	in	available	fault	
currents

Results	in
• Impartial	discrimination	of	

faults

Potential	Solutions
• Method	1:

– Change	to	differential	
protection

– Directional	sensitivity	for	over	
current	relays

– Over	current	relays	forms	the	
backup	protection

• Method	2:
– Make	use	of	“loop”	cable	as	a	

backup	tie-breaker

• Method	3:
– Adaptive	protection

Protection Challenge
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ESS Placement, Sizing & 
Scheduling

MULTIPLE MICROGRIDS



ESS – Multiple Microgrids

• Single ESS vs. Multiple ESS
– Isolated MG with individual GESS
– Connected MG with single GESS

v	 Placement	location

MG1 MG2

MG3

ESS

ESS

ESS
ESS ESS
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ESS – Multiple Microgrids

• Objective:
– Minimise total fuel cost

• Using simple PV prediction based on ANN

• Considerations
– Operations

• Load profile
• PV prediction accuracy
• DG fuel efficiency and ramp cost

• Simulation
– 3 days with varying PV condition

>		Placement	location

v	 Sizing	&	Scheduling

• Levelised GESS cost
• GESS efficiency
• Power losses (transfer)

26



PV Prediction

• Consideration of time-series irradiance and weather data

• Training through backpropagation

>		Artificial	Neural	Network	based

OutputsInputs

Hidden	Layer(s)

backpropagation
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PV Prediction
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v	 Artificial	Neural	Network	based

>		Prediction	Results
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Individual	ESS

• Individual	ESS	on	each	MG	
interconnected	together	
reduces	total	required	ESS	
capacity	&	inverter	rating

• Allows	for	higher	reliability

Aggregated	ESS

• Lower	operating	cost

• Aggregate	nature	of	load	
and	PV	allows	for	DG	to	
operate	at	more	efficient	
point

ESS Study
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Summary
• Determine RER capacity and variability

• Evaluate power reliability and quality requirements

• Provide network redundancy 

• Provide power / energy redundancy

• Install corrective DERs

• Ensure network remains properly protected
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End of Presentation


