Smart Islands networks with very high penetration of RES
The goal

- Test a new concept: Hybrid station with RES and small size of storage
- Increase the RES penetration beyond 60%
- Sustainable solution
 - Does not increase the total cost in the island
 - Should be an attractive investment
- Ensure the power supply in the island
- Minimize impact on thermal production
- New experiences for the Island Operator in order to replicate the solution in other islands
Challenges

- **Technical**
 - The system may run only with RES + Storage for several hours
- **Regulatory**
 - Energy Market framework in the Non-Interconnected Islands (NII)
 - Regulatory framework for Hybrid stations not sufficient
- **Operational**
 - Too many actors actively involved in the operation of the Hybrid (Hybrid station, PPC, NII Operator - HEDNO, other RES)
Required infrastructure

- Hybrid Control Center
 - Local SCADA (monitoring, control and management of RES and Storage)
 - Functionalities for the participation in the island operation
- Local Control Center
 - Real time control
 - Direct connection with other SCADAs (Thermal Station, Hybrid, RES)
- Central Control Center (in Athens)
 - Dispatch schedule
 - Monitor
- Metering infrastructure (for billing)
Main requirements
- Increased production cost
- No applications for other RES

The most suitable island is one with peak load 1-5 MW

Why not smaller island (<1 MW)?
- Possibly no replicable solution
- No sufficient number of operators

Why not bigger island (>5 MW)?
- Production cost might be cheaper
- Huge investment
- Multiple applications for RES (Wind-PV)
Hybrid Sizing

- Over sizing RES (installed RES capacity close to peak load of the island)
- The increased RES production allows the installation of smaller batteries
- Wind production should be the main production source
Main rules of operation

- 4h scheduling (updated every 15 min)
- The system may run with RES and Storage only
- The Hybrid station provides ancillary services
- The main technical constraint is the technical minimum of the thermal engines
- Assumes the existence of advanced automation (for scheduling, set point to the units etc)
- Start up/ Shut down of units:
 - Hybrid station: should be an automated solution
 - Thermal Units: Under discussion
Simulation – Case of Astypalea

- Typical NII system, peak during summer
- 5 thermal units with total capacity 4.3 MW
- Peak Load: 2.3 MW
- Yearly Demand: 6,600 MWh
- 4 PV plants (0.32 MW) and 7 roof top PVs (0.035 MW)
Main Scenario

- Hybrid: 0.4MW PV, 2MW Wind, Storage 2MW/8MWh
- Average Variable Cost 250€/MWh
- Pricing (according to the legislation)
 - Energy produced from battery: 312.5€/MWh
 - Energy from PV feeding the load: 69€/MWh-191€/MWh
 - Energy from W/F feeding the load: 110€/MWh-211.25€/MWh
- Consideration in IRR
 - Battery cost 550k€/MWh
 - Installation cost for PV 1200€/kW
 - Installation cost for W/F 1500€/kW
 - Other costs 1M€ (SCADA, substation etc)
Operation of the Hybrid Station

- 65% of the total demand is covered by the Hybrid station
- If the other PV stations are considered the total RES penetration is 73%.
Hybrid pricing affects the IRR and Total System Cost.
The Total System Cost includes Thermal and RES costs.
Thermal Production Cost

- Thermal production costs affects the investment.
- High Thermal production cost makes the Hybrid attractive for the system.
- Affects the IRR but no equally the RES penetration
Conclusions- Next Steps

- This is a challenging project for the Greek Islands
- We should prove:
 - It is technically feasible
 - The investment is attractive
 - The total system cost is not increased
- Currently HEDNO, RAE, PPC and the Ministry of Environment, Energy and Climate Change are working on the regulatory issues
- Soon the main framework will be ready
Thank you

ADIMEAS@POWER.ECE.NTUA.GR