Autonomic Microgrids?

Professor Phil Taylor
Siemens Professor of Energy Systems
Director of the EPSRC National Centre for Energy Systems Integration

Niagara 2016 Symposium on Microgrids
20 – 21st October 2016
Niagara on the Lake, Ontario
Overview

• Autonomic Microgrids and Self* Operation
• Technical Zoning
• Algorithm Selection
• Market Zoning
• Self Organising Architectures and Cyber Security
• National Centre for Energy Systems Integration
Drivers

TIMELINE

NOW

2030

2050

DRIVERS

Complexity

Uncertainty

Decentralisation

Increased Observability

Active Participation (of millions)

RESPONSES

Self-*

Intelligence (distributed)
Overarching Research Question

Can a fully distributed intelligence and control philosophy deliver the future flexible grids required to facilitate the low carbon transition, allow for the adoption of emerging game-changing network technologies and cope with the accompanying increase in uncertainty and complexity?
Self* Network Operation and Control
Schematic
II. How to zone? –(a)

- Proximity metric: definition of distance among buses
- Definition of merging criteria
- Clustering validation criteria
- Zonal centroid identification (pilot node)

Zoning methodologies (examples of existing and own ones):
- Hierarchical clustering – single distance (HCSD)
- Hierarchical clustering – MVAr control space (HCVS)
- Spectral Clustering (SKC)
- Fuzzy Clustering (FCM)
II. How to zone? –(b)

Performance of a zoning decision

- a greater performance signifies reduced losses & enhanced security

Robustness of a zoning decision

- testing the effect of uncertainty on the measurements (e.g. imperfect prediction, noisy or corrupted data)
III. Static vs. adaptive zoning.

Questioning the feasibility.

- Fast enough (<1 min) for large scale network (e.g. 2383 buses test network)?
- Availability of measurement and telecommunication infrastructure?

Questioning the value.

- Performance enhancement vs. reconfiguration threshold
Potential to provide **better performance** by selecting algorithms for each state, instead of using one algorithm for all states.
Building Algorithm Selectors

- Create an **algorithm selector** to exploit link between network state and algorithm performance
- Use machine learning to create the selector

Different machine learning algorithms can be used, such as artificial neural networks (ANN), decision tree learners and random forests

OFFLINE (TRAINING)

ONLINE (USE)
Building Algorithm Selectors

- Creation of algorithm selectors already established in computer science applications
- Two main types:
 - **Direct**
 - **EPM-based** (Empirical Performance Model)
Application: Power Flow Management

• Additional Distributed Generators (DGs) can cause overloaded network branches

• Power Flow Management:
 – Active approach (Active Network Management)
 – Control DG outputs to mitigate overloads

• Ideally: **minimise overloads while minimising DG curtailment**
Application: Power Flow Management

- Power flow management algorithms implemented & tested: 5
- Case study power systems used for testing: 4
- Varying system states simulated per system: 40k+
- Algorithm selector designs developed & evaluated: 20k+
Application: Power Flow Management

- Example: IEEE 57-bus system, 10,000 states

<table>
<thead>
<tr>
<th>Algorithm / Selector</th>
<th>No. of overloads (count)</th>
<th>Curtained energy (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Individual Algorithm (OPF)</td>
<td>1367</td>
<td>749,900</td>
</tr>
<tr>
<td>Best Direct Selector</td>
<td>771</td>
<td>900,734</td>
</tr>
<tr>
<td>Best EPM-based Selector</td>
<td>772</td>
<td>926,646</td>
</tr>
<tr>
<td>Optimal Selections</td>
<td>768</td>
<td>821,087</td>
</tr>
</tbody>
</table>

- Algorithm selection reduces the number of overloads
Economical and Technical Layers

Economical Layer

Set points

Technical Layer

Technical constraints: power voltage
Interaction between the two Layers

- Technical zoning
 - Auction Runs
 - Economical zoning
 - Technical constraints violated
 - Solution
 - Lowest cost
 - Lowest possible cost
 - Y
 - N
An example – initial zoning

- 11 bidders participating in the auction – six demands (D1-D6) and five suppliers (S1-S5).

- Overall demand in Control zone A is 12.5 MW and 10 MW in Control zone B.
Using a two-sided uniform-price auction, Supplier 4 delivers 12.5 MW to Demands 1, 2 and 3 at a price of 90 pence. Before using the flexible zoning structure, the cost in Economic zone A alone would be 1125 pence (12.5 MW*90 pence).
Offers and bids in zone B Initial zoning

<table>
<thead>
<tr>
<th>Demand</th>
<th>MW</th>
<th>Cost (pence/MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand 4</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Demand 5</td>
<td>2.5</td>
<td>50</td>
</tr>
<tr>
<td>Demand 6</td>
<td>2.5</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suppliers</th>
<th>MW</th>
<th>Cost (pence/MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier 5</td>
<td>12.5</td>
<td>50</td>
</tr>
<tr>
<td>Supplier 5</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Supplier 5</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Again, using a two-sided uniform-price auction Supplier 5 delivers 10 MW to Demands 4, 5 and 6 at a price of 40 pence. At this price, the energy cost in Economic zone B alone would be 400 pence (10 MW*40 pence). Together with Economic zone A, **total energy cost would be 1525 pence.**
Suggestion 1 – lowest overall cost

<table>
<thead>
<tr>
<th>Zones</th>
<th>MW</th>
<th>Cost (pence/MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic Zone A (new zone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand 1</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Demand 3</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>Demand 5</td>
<td>2.5</td>
<td>50</td>
</tr>
<tr>
<td>Supplier 5</td>
<td>12.5</td>
<td>50</td>
</tr>
<tr>
<td>Economic Zone B (new zone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand 2</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>Demand 4</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Demand 6</td>
<td>2.5</td>
<td>40</td>
</tr>
<tr>
<td>Supplier 5</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Total cost = 1025 pence.

\[12.5 \times 50 + 10 \times 40 = 625 + 400 = 1025 \text{ pence.}\]
Suggestion 2 – second-lowest overall cost
(If Suggestion 1 is not technically feasible)

<table>
<thead>
<tr>
<th>Zones</th>
<th>MW</th>
<th>Cost (pence/MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic Zone A (new zone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand 1</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Demand 2</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>Demand 4</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Supplier 4</td>
<td>2.5</td>
<td>80</td>
</tr>
<tr>
<td>Supplier 5</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Economic Zone B (new zone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand 3</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>Demand 5</td>
<td>2.5</td>
<td>50</td>
</tr>
<tr>
<td>Demand 6</td>
<td>2.5</td>
<td>40</td>
</tr>
<tr>
<td>Supplier 5</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Total cost</td>
<td></td>
<td>1400</td>
</tr>
</tbody>
</table>

12.5*80+10*40 = 1000+400 = 1400 pence.
Decision

- The Technical Layer rejects Economic Layer Suggestion 1.
- Economic Layer Suggestion 2 is feasible. Suggestion 2 is accepted by Technical Layer but is an improvement on initial suggestion.

(a) Suggestion 1
(b) Suggestion 2

Fig. 5 Suggested zones after re-configuration
Self-Organising Architectures

- An Agent based architecture
- Self-Organising properties to respond to attacks
- Operates in three stages
 - Initialisation
 - Performance Monitoring
 - Decision Making and reconfiguration
- Fuzzy based Decision making engine
- Interfaces with Matpower for load flow calculation
Network Configuration

- 340 Customers with profiles
- 4 PV Generators with profiles
- 4 Active Aggregates (4 Dormant)
- 4 Central Core Agents
Attack Strategies

- All attacks are based on low-rate Denial of Service attacks
- Selected customer agents act as the attackers
- Aggregate Agents as controllers are the targets
- Two levels of attacker sophistication
 - Static: Low level of sophistication, attacker selects a fixed target
 - Adaptive: An escalated state, attack traffic redirects after an architecture transition

29 Combinations of Attack Strategy, Intensity and Sophistication

- Burst Attack: Attack traffic transmitted for 250 seconds
- Continuous Attack: Attack traffic transmitted once triggered until the end of the simulation
- Sequential Attack: Two Burst instances at critical stages of the control process

Attacks timed to coincide with voltage control signals
Responding to an attack

• The architect is informed the impact on performance metrics.
• All metrics are combined to form a value for Computational Burden.
• A fuzzy based decision making engine monitors the burden and its rate of change.
• If necessary architectural transitions are initiated to redistribute connections, replace agents or increase aggregate capacity
• Aiming to improve control performance through easing load on the communication network
Urban Microgrid in Newcastle

Science Central Masterplan

- Residential
- Office / Mixed use
- Newcastle University

EV Filling station

- Energy storage test bed
- Geothermal borehole
- Smartgrid Electrical Infrastructure (11kV/400V)

CHP system
- Thermal Storage
- Heat and Cool Network

1) Urban Sciences Building
 Completion date: Autumn 2017

2) Learning & Teaching Centre
 Completion date: Autumn 2017

3) The Key
 Completed: February 2016

4) The Core
 Completed: November 2014

5) Newcastle Laboratory
 Completion date: Spring 2018
Conclusions

• Autonomic Microgrids and Self* promising
 – Dynamic Zones, Algorithm Selection
• Multiple Microgrids ?
• Decentralised Markets
• Cyber Security needs more work
 – Model the attackers
• Multi Vector Microgrids