Report on: Renewable Mini-Grids Innovation Outlook

Xavier Vallvé - Trama TecnoAmbiental (TTA)

Report contributors:

Mauricio Solano Peralta (TTA), John Glassmire (HOMER), Marilena Lazopoulou (TTA), Kristina Sumner (HOMER), Xavier Vallvé (TTA), Peter Lilienthal (HOMER) Maria Ayuso (IRENA) and Francisco Boshell (IRENA).

What is a renewable mini-grid?

Mini-grids* that derive a majority of their primary energy from renewable sources to generate electricity

^{*} Mini-grids are integrated energy infrastructures with loads and energy resources, including generators (e.g. PV, wind turbines), energy storage devices (e.g. lead-acid batteries), power conversion equipment (e.g. inverters), and control, management and measurement equipment (e.g. battery supervisors, data transfer, meters, among others).

Mini-grid types

	Lower Tier of Service	Higher Tier of Service
	Autonomous Basic (AB mini-grids) Generation Sources: PV, hydro and biomass Tier of service: less than 24 hour power End-users: Remote community without major commercial or industrial activity Added value: Enable enhanced energy access Alternative to grid-extension Improve quality of life	Autonomous Full (AF mini-grids) Generation Sources: PV, hydro and wind Tier of service: 24/7 power End-users: Remote communities, islands, with major commercial or industrial requirements; Industrial sites disconnected from grid Added value: • Alternative to expensive polluting imported fuels
	Interconnected Community (IC mini-grids) Generation Sources: PV, wind and biomass/biogas Tier of service: High critical/ interruptible End-users: Medium to large grid- connected community (e.g. university campus) Added value: • Community control	 Diversification and flexibility of supply Interconnected Large Industrial (ILI mini-grids) Generation Sources: PV, wind and biomass/biogas Tier of service: Very high: Critical/ uninterruptible End-users: Data centres, industrial processing or other critical uses Added value:
ī	 Community control Improve reliability Response to catastrophic events 	 High reliability for critical loads Enhance environmental performance Resiliency

Why a renewable mini-grid?

- Mini-grids
- ✓ Autonomous mini-grids can be cost-effective in remote areas
- ✓ Improved supply and strengthened neighboring grids of interconnected mini-grids
- ✓ Increase reliability and resiliency to the main grid
- ✓ Diminished environmental impact through high use of renewables
- ✓ Increased local control and choice in the energy mix

Deployment today

Limited	Pilots	Emerging	Mature

Region	Autonomous Basic		Autonomous Full			Interconnected Community	Interconnected Large Industrial
Canada and USA						<u> </u>	0
Caribbean, Central America, Mexico							
South America				0			
Europe							
North Africa				0			
Sub-Saharan Africa							
Central and North Asia		<u> </u>					
East and South Asia							
Middle East							
Oceania							
Antarctica							5

Methodology

- Patent review
- Literature review (outlooks, scientific papers, etc.)
- Interviews with experts from industry, academia, research centres, NGOs
- Case studies

Functionalities

Plan and Design patent review

- The plan and design patent review focused on tools for modelling and simulation
- The most trending technology modelling and simulation is for computer aided design (CAD)

CMM technologies patent review

- **Data communication technologies**: power network operations, communications and information technologies, distribution or generation.
- **Mini-grid management:** technologies for reduction of losses (e.g. zero current switching or soft switching converters, zero voltage switching or non-dissipative snubbers).
- Intelligent storage control: uninterruptible or backup power supplies integrating with renewable energies.
- User meters: utility meters which are networked together (e.g. interconnection within a single building)
- **Measurements**: equipment characterised by state monitoring, e.g. fault, temperature monitoring, insulator monitoring, and corona discharge.

Storage technologies patent review

- **Electrochemical**: lithium ion batteries and lead acid batteries in the past 5 years. Lithium technologies and flow batteries are the most cited and published. Most patents for sodium-sulphur and lead-acid batteries patents are old.
- Chemical: Proton Exchange Membrane Fuel Cells and hydrogen technologies (liquified, solidified or compressed)
- Electrical: ultracapacitors, supercapacitors, and double-layer capacitors.
- Thermal: research is focused primarily on sensible and latent heat storage.
- Mechanical: research in pressurized fluid storage, internal combustion engines and fluidic energy storage (e.g. pressure accumulators).

Convert technologies patent review

- **DC-to-DC conversion**: galvanically and non-galvanically isolated DC/DC converters in the past 5 years. Most focus is on low power applications, which has some applicability to renewable mini-grids.
- Conversion between AC and DC: DC/AC or AC/DC conversion and technologies which use wide band gap based power semiconductors, i.e. power converters integrating silicon carbide, gallium arsenide, gallium nitride or diamond power switches
- AC-to-AC conversion: AC/AC converters

Consume technologies patent review

- **Energy efficiency**: elements or equipment involving protection devices and home appliances involving heating ventilating or air conditioning units.
- **Demand side management**: energy saving modes or efficient standby (e.g. detecting absence of load or auto-off), and demand response devices (e.g. load shedding and peak shaving).
- Backup: elements or equipment involving energy storage, UPS equipment or standby emergency generators involved in the last stages of power distribution.

Plan and design

Opportunity for Innovation	Cost	Reliability	Ease	Environment
Standardised planning and design	****	**	****	**

STATE OF THE ART TODAY

- Requires renewable mini-grid specialist for all stages of design, including conceptual design
- General solar resource data is of sufficient quality; however wind and hydro data require on-site measurements to validate and data can be costly.
- Load planning is based on ad-hoc and site-specific approaches for estimating loads

- Early stage design of renewable mini-grids does not require a specialist, and there are robust tools for a complete design, based on proven off-the-shelf components
- Resource planning is supported by robust tools that accurately predict resources without on-site validation. Detailed, local resource data is affordable and readily available.
- Smart load planning tools provide accurate, proven estimates on expected load based on readily available data at a site

Control, manage, and measure

Opportunity for Innovation	Cost	Reliability	Ease	Environment
More intelligent controls	***	***	****	**
Improved communications and standards	**	***	***	*
Improved metering and monitoring	**	***	****	***
Simplify connecting equipment together	**	*	****	*

STATE OF THE ART TODAY

- Specialized and expensive controls
- Non-economic, non-predictive controls
- Moderate plug-and-play capability
- High utility interest, but limited to pilot projects
- Numerous competing standards
- One to two hours renewable resource prediction with high accuracy

- Low cost modular controls
- Economic and predictive controls
- Seamless plug-and-play capability
- Standard interconnection terms for utilities
- Common, open-source standards
- Day-ahead renewable resource prediction with high accuracy

Store

Opportunity for Innovation	Cost	Reliability	Ease	Environment
Use less expensive, more abundant, and less resource intensive materials	****	**	*	***
More robust, lower maintenance technologies to reduce lifecycle costs for storage	***	****	***	**
Improvements in long-term storage capability	**	**	**	***
Improvements in high power output capability	**	***	**	***

STATE OF THE ART TODAY

- Expensive
- Most deployments use lead-acid batteries
- Limited options for long-term and seasonal storage
- Increasing numbers of projects that use flywheels, lithium ion, and flow batteries

- Significantly decreased costs
- More technologies used, particularly lithium-ion
- Enhanced battery chemistries and solar fuels enable better long-term and seasonal storage
- Multiple, diverse storage technologies are commonly used in projects

Convert

Opportunity for Innovation	Cost	Reliability	Ease	Environment
Lower capital costs of converters	****	*	**	*
Combine diverse function into inverters	**	**	***	*
Improve efficiency, particularly at partial load	**	**	*	***
More converter options for diverse renewable mini-grid markets	**	**	***	*

STATE OF THE ART TODAY

- Grid-following inverters have achieved considerable price drops in the past decade
- Dual-mode inverters are starting to become common for interconnected mini-grids, as they are coming into the main grid market for distributed generation in unreliable grids that can operate interconnected or islanded

- Converters are Increasingly using new nanomaterial semiconductors, such as CNT.
- Dual-mode inverters with smooth shifts from grid to island mode in black start with innovative droop control methods to avoid transient fluctuations of voltage and frequency.

Convert

Consume

Opportunity for Innovation	Cost	Reliability	Ease	Environment
Increased commercial availability of efficient end-uses	****	*	**	***
Better user tools for adapting consumption to energy supply (DSM)	****	**	***	***

STATE OF THE ART TODAY

- Mini-grids are currently feeding mostly AC loads
- The use of DC power is primarily explored in commercial buildings and in smaller energy access applications/mini-grids

- Increasing use of high-efficiency and DC appliances reduce electricity costs for home owners and businesses.
- High-efficiency and DC appliances are standard, further reducing electricity costs for home owners and businesses

Generate

Opportunity for Innovation	Cost	Reliability	Ease	Environment
Lower capital costs for generation	****	*	*	**
Reduce maintenance needs	**	***	***	**
Improved efficiency and increased energy capture	***	*	*	***
More converter options for diverse renewable mini-grid markets	**	**	***	*

STATE OF THE ART TODAY

- Low cost silicon-based polycrystalline solar PV is main renewable generation technology used in mini-grids.
- Small wind is used less due in large part to competition from solar PV and the high cost of resource assessment
- There are some new small hydro power turbines for low head and low flow applications,
- Increased availability of biomass gasification that is able to handle more feedstock, although they are plagued with maintenance issues.

- Solar remains the dominant energy generation source in mini-grids. Solar PV price reductions continue, driven by advancements in DSSC, nanomaterials and organic chemistries.
- Wind, hydro, and biomass are strong options when suitable resource is available. Advancements in resource tracking, together with lowermaintenance designs have made these more viable.
- It is cost-effective to get near 100% energy from renewables in a mini-gad.

Renewable mini-grids as a whole

STATE OF THE ART TODAY

 Autonomous: Most of the autonomous mini-grid based on renewable energy are small. Larger autonomous mini-grids are increasingly using renewables to displace a part of their diesel generation.

Interconnected: Interconnected minigrids use storage for reliability during short duration main grid outages. Renewables are used primarily in mini-grids interconnected with unreliable main grids and in areas that have renewable incentives or expensive main grid power. Many interconnected mini-grids use fossil generation for back-up, along with combined heat and power.

FUTURE

- Autonomous: Renewables are used in all mini-grids. There are many DC mini-grids. Leveraging low cost storage, low cost RE generation and intelligent controls, minigrids are widespread. Energy access renewable mini-grids are commercially viable, while higher reliability renewable mini-grids are increasingly commercially viable.
- Interconnected: Mini-grids with medium-penetrations of RE are commonplace, with uptake driven by need for resilient disaster response. Spurred by decreasing costs, many communities have adopted renewable mini-grids for local control of energy. Broader utility acceptance of mini-grids in their networks reduces costs for resilient operation for both main and mini-grid.

21

Renewable mini-grids as a whole

The role of policy makers

The role of the private sector

Private sector

Undertake fundamental research

Pilot projects

Deploy mini-grids

Technology transfer

Industry standard groups

The role of academia and NGOs

Conclusions

- Innovation in renewable mini-grids will span many functionalities, technologies, and industries.
- Technological innovations continue to happen in all six of the core functionalities.
- In the next two decades innovations will:
 - decrease costs of energy from mini-grids,
 - drive an increase of renewable energy penetration in mini-grids, and
 - make mini-grids an increasingly attractive alternative to traditional centralized grid planning and SHS.

Conclusions

Plan & design – 2025

Plan & design – 2035

CMM - 2025

CMM - 2035

Store - 2025

Store - 2035

Generate – 2025

Generate - 2035

Convert - 2025

Convert – 2035

Consume – 2025

Consume - 2035

Interoperability

Thank you very much for your attention!

You can download the report from the link below:

https://goo.gl/Xf9LQg