Improving Microgrid Cybersecurity

Symposium on Microgrids
Niagara Falls, CA
November 20, 2016

Abraham Ellis, Ph.D.
Manager, Renewable and Distributed Systems Integration
Sandia National Laboratories
Albuquerque, NM, USA
aellis@sandia.gov
Outline

- Overview
 - Motivation and *defense-in-depth* concepts for microgrid cybersecurity
- Three ways to improving microgrids cybersecurity *
 1. Network segmentation (Microgrid Cybersecurity Reference Architecture)
 2. Hardware-based detection (WeaselBoard PLC hardware security)
 3. Better cyber-physical modeling, simulation and testing (Emulytics, SCEPTRE)
- Q&A

*Based on R&D work at Sandia National Laboratories, sponsored by:
- US Department of Energy Office of Electricity Delivery and Energy Reliability (US DOE/OE)
- US Department of Defense (US DOD)
Energy Systems and Critical Infrastructure

- Energy infrastructure is a common cybersecurity target
- Increased vulnerability due to higher utilization of industrial control systems (ICS), not generally designed with cybersecurity in mind
- Increasingly relevant to microgrids, especially critical applications

![Pie chart showing Energy (79, 32%) and Critical Manufacturing (65, 27%) as the most critical sectors.](Image)

Source: US DHS ICS-CERT monitor, 2015

![Line graph showing ICS (SCADA/DCS) Disclosures by Year.](Image)

Source: Open-Source Vulnerability Database (OSVDB)
Defense-in-Depth Concepts

- Defense-in-depth concept
 - Multiple security layers addressing *People, Technology & Operations* vulnerabilities
 - Common in high security applications (e.g., DOD)

- Four stages of cybersecurity defense-in-depth

 1. **Protection**
 - Policies & procedures (authentication, physical security)
 - Network security (e.g., *Network segmentation*, encryption)

 2. **Detection**
 - Real-time monitoring, situational awareness

 3. **Response**
 - Contain consequences, impact
 - Readiness: Planning and decision support tools

 4. **Restoration**
 - Recover system functionality
Control System Architecture

- Room for improving cybersecurity in all layers and interfaces

- User Interfaces
 - Human-Machine Interface (HMI) software
 - Status displays
 - Switches and dials

- Control System Apps
 - Supervisory Control and Data Acquisition (SCADA)
 - Distributed Control Systems (EMS/DCS)
 - Data Historians

- Field Devices
 - Programmable Logic Controllers (PLC)
 - Remote Telemetry Units (RTU)
 - Intelligent Electronic Devices

- Sensors
 - Thermocouples
 - Accelerometers
 - Photoresistors

- Actuators
 - Breakers/Switches
 - Motors
 - Valves

- Physical Process
 - Oil & Gas Refining
 - Electrical Distribution and Transmission
 - Manufacturing

- Corporate Layer
- SCADA Layer
- ICS/Field Device Layer
- Controlled Process (infrastructure)
Cyber Security Reference Architecture

- Recommendations for the design and implementation of secure microgrid control systems
 - Focus on *network segmentation* best practices and design criteria
 - Goal is to reduce vulnerability, consequences and recovery time
- Design process
 1. Identify all *actors* (microgrid operator, network administrator, corporate user, vendors, …)
 2. Describe *data exchange* requirements (type, volume, reliability, confidentiality, etc.) See report templates.
 3. Define *enclaves* with similar security and actors
 4. Define enforceable *functional domains* for IEDs
 5. Design and apply other cybersecurity controls (network interface firewalls, monitoring, …)
Enclaves and Functional Domains

- Enclaves
 - Defines a trusted environment under a single authority and security policy
 - Enclaves are selected based on common attributes for QoS, security, and data requirements

- Functional Domains
 - Defines allowable access and data exchange to allow actors in different enclaves to collaborate securely

Microgrid Control Network Example

- Typical control system network configuration is flat
 - Relies mostly on security policy (e.g., authentication), maybe hardening.
 - Not a good example of defense-in-depth:
 » All actors could accidentally or maliciously access all data, applications and physical assets within the microgrid
 » Potential impacts are not contained
Data Exchange Worksheet

Data Exchange Worksheet Format

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Example Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type of data exchange to occur</td>
<td>monitor, control, report, write</td>
</tr>
<tr>
<td>Interval</td>
<td>How often data exchange occurs</td>
<td>e.g. milliseconds, seconds</td>
</tr>
<tr>
<td>Method</td>
<td>How data will be exchanged</td>
<td>unicast, multicast, broadcast</td>
</tr>
<tr>
<td>Priority</td>
<td>Relative importance of exchanging the data</td>
<td>high, medium, low</td>
</tr>
<tr>
<td>Latency Tolerance</td>
<td>Tolerance to delayed control or delayed data exchange</td>
<td>high (delays do not affect operation), medium, low</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type of data to be exchanged</td>
<td>voltage, setpoint, status</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Necessary precision/timeliness of data</td>
<td>significant digits, time units</td>
</tr>
<tr>
<td>Volume</td>
<td>Amount of data to transferred per exchange</td>
<td>e.g. bytes, kilobytes, etc.</td>
</tr>
<tr>
<td>Reliability</td>
<td>Necessity of access to control processes and data</td>
<td>critical, important, informative</td>
</tr>
<tr>
<td>Information Assurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidentiality</td>
<td>Importance of preserving restrictions to control processes and information access (based on risk to system operations and/or system security)</td>
<td>high, medium, low</td>
</tr>
<tr>
<td>Integrity</td>
<td>Importance of preventing unauthorized changes to control processes or data, including authenticity (based on reliability with respect to operations)</td>
<td>high, medium, low</td>
</tr>
<tr>
<td>Availability</td>
<td>Importance of timely and reliable access to control processes and data (based on priority and latency tolerance with respect to operations)</td>
<td>high, medium, low</td>
</tr>
</tbody>
</table>
Microgrid Network Segmentation Example

- Suppose we are designing a microgrid with controllable generators, storage, and network elements managed by IEDs.
- Could define 3 enclaves based on data and security requirements:
 - **Operator**: Primary and backup HMIs
 - **Server**: HMI server, EMS or controller
 - **Manager**: Intelligent electronic devices (IEDs) controlling or managing microgrid switches, flow devices, generators, demand response, etc.
- Each enclave includes a network intrusion detection and prevention.

Microgrid Network Segmentation Example
Functional Domains – Examples

- IED functional domain
 - Receive data from a power device via serial connection, send *information* to EMS over TCP/IP
 - Process information from power device or from EMS, send *command* or *data request* to a power device via serial connection

- EMS functional domain
 - Receive data from IEDs, send *information* to HMI over TCP/IP
 - Process information from IEDs or operator via HMI, send *command* or *data request* to IEDs
Field Device Security

- Vulnerability of field devices (e.g., PLCs) is a challenging issue
 - Lack of situational awareness locally
 - Limited response and recovery recourses
- Sandia is working on technologies to address this gap
 - WeaselBoard: Locally monitor PLC backplane traffic in real time
 - On-board analytics to detect, alarm and block
 - Industry partnerships

More information: http://www.weaselboard.com/
Cybersecurity Analytics

- Red Team assessments and quantitative security performance scores
Cybersecurity Analytics

- High fidelity, scalable cyber-physical analysis is difficult
 - Interdependent complex ICS and physical infrastructure
 - Limited capability to model ICS threats and map to physical system consequences
- Sandia’s *Emulytics™* approach combines emulated, simulated, and physical testbed environments
- SCEPTRE is a unique tool for high-fidelity ICS mod/sim/test

More information: https://vimeo.com/178492617
Emulysts: ICS Mod/Sim/Test Environment

- Model ICS devices w/ SCEPTRE
 - Remote Terminal Units (RTU)
 - Programmable Logic Controllers (PLC)
 - Protection Relays
- Model control center server/services
 - Actual SCADA/EMS/DCS software running real or virtualized hardware
- Model comms network using live-virtual-constructive approach
 - Real devices (routers, switches)
 - Emulated devices (Dynamips, Vyatta)
 - Simulated devices via OPNET Modeler
Questions? Comments?

Abraham Ellis
Sandia National Laboratories
aellis@sandia.gov