

University of Athens

Best Practices of Rural Electrification in Developing Countries

Panos Kotsampopoulos

National Technical University of Athens

Aalborg 2015 Symposium on Microgrids, 27-28 August

Overview

- Technologies and case studies
 - Diesel Based PV/Wind Hybrid
 - PV/Wind with Battery Storage
 - Solar Lanterns and Irrigation System
 - Micro-hydro
 - Biomass
- Case Study of Hybrid System in rural Ethiopia

Diesel Based PV/Wind Hybrid

Diesel Generators: Most common
 High operation costs: fuel, transportation, maintenance
 Hybrid: reduction in fuel cost and generator use.

- Diesel Based PV Hybrid
 - Applied to existing diesel systems and also to newbuilt systems
 - PVs cover the morning to mid-day load, whereas the diesel genset can meet the load demand for many hours overnight.
 - Avoiding a low load factor, reverse power flows and insufficient spinning reserve due to the intermittent renewable source is considered into the design and operation of the system.
 - 100 Pilot Projects: Kenya, Rwanda, Mali, Senegal, Tanzania. PV capacity from 5 to 30kWp

- Diesel Based Wind Hybrid
 - >Feasible solution in areas with a good wind resource.
 - Saint Helena Island, in South Atlantic Ocean (4,200 population)
 - Wind turbines from 50kW to 300kW provide 20% of the islands energy needs thus saving the equivalent energy cost in diesel fuel and transportation costs.

>PV/Wind with Battery Storage

- Main energy provider is the renewable resource.
 Diesel generator has a back-up role or is not present.
- A Wind Turbine can be combined with PVs due to their complementarity
- The Wind Turbines can be manufactured in a community level using local materials and approaches.

Individual home system and community systems

Story of Bangladesh

Solar Home Systems (SHS)

- 1.6 million SHS of 50Wp that supply DC loads have already been installed.
- Target of 4 million by 2015.
- > Different paying methods:
 - full amount in small parts becoming the owner of the system at the end of the payment.
 - Smaller amount for a longer period and rent the equipment from the seller.

- Lao PDR
 - > Over 9000 SHS and community centers
 - > Target of 90% electricity coverage by 2020.
- Peru
 - ➤ 3000 SHS since 2012
 - The government funds 80% of the total cost of the system, leaving the rest 20% to be covered by the users.
 - > Educating and training people to the daily operation of SHS.
- India: 670,000 SHS
- > Indonesia 200,000 SHS
- > Kenya, Ghana and Ethiopia are making efforts

- Solar Lantern
 - ≻PV, battery and LED lamp
 - Aiming to replace the use of Kerosene Lamp.
 - According to World Health Organization nearly 1.2 million people die from indoor air pollution every year, a large proportion of which is due to the use of Kerosene lamps.
 - 800,000 in use in India, 200,000 in Bangladesh, and many in other countries in sub-Saharan Africa and Asia.

Solar Photovoltaic Irrigation System

- >Stand-alone, often battery-less solar photovoltaic
 - system that can pump water.
- ≻Minimum maintenance.
- ≻Ideal for remote locations.
- Benin

- >60% of households lack food-security in rural areas
- Solar-powered irrigation systems are used to irrigate fields for consumption and sale during the dry season.
- Over 48,000 people are already benefiting from these systems.
- Electrification of households and community centers is the next step

≻Micro-Hydro

- >Adaptable to local conditions.
- Energy production 24 hours/day at full capacity.
- Can promote local technology and skills, with the transfer of necessary knowledge and the manufacture of several components locally.
 Cost effective

• Nepal

- Successful cooperation of NGO with government promoted local manufacturing
- Run-of-the-river plants, that use the natural flow of the river to generate power.
- >2,500 micro-hydro plants have already been installed with a total capacity of 20 MW.

• Nepal

A hybrid system of a micro-hydro plant of 20kW, a 3kW wind turbine and a 5kW PV system exists in villages of Thingan and Kolkhop.

Biomass

- >Already used for cooking and heating
- Rice, cashew nuts, coconut shells or other woody biomass can be used for the production of electricity.
- From a few kWs to several MWs
- ≻Possibly lower cost than diesel generation

- India
 - A system of 5 gasifiers, of 100 MW each, provides electricity to the isolated island of Gosaba and its 1150 families
 - Microgrids in electrified areas in cases of unstable grid (e.g. for the electrification of public spaces or water pumps)
- Cambodia
 - Over 100 biomass gasification plants with average capacity of 200kW.
 - The rice husk production could be enough to completely cover the electricity demand.
- Thailand
 - ≥ 20 plants from 10kW up to 400kW.

Benefits from Rural Electrification

- Access to reliable electricity brought significant changes in both social and economic aspects of everyday life.
- Social Impact
 - Higher quality of light
 - Free from inhalation of toxic kerosene smoke.
 - Improved access to information, through mobile, television and radios.
 - Children can study longer and more effectively.

Benefits from Rural Electrification

Economic Impact

- The monthly cost of kerosene and diesel has been replaced by the payments for the micro-grid
- New income earning activities are created, such as mobile phones and battery charging.
- New job opportunities and new workshops are easier to create and operate with the presence of electricity, which strengthens the local economy.
- Enterprises are able to remain open after dark

Case Study of Hybrid System in rural Ethiopia

- Ethiopia has one of the lowest rates of electricity coverage, which is about 16%.
- Hybrid system that consists of a small hydropower plant, a diesel generator and solar panels along with batteries
- HOMER software was used
- 105 families, school, health center, flour mill
- Deferrable load: water pumps
- 166 kWh/day

Case Study of Hybrid System

Optimization results

4	7 t to 🗗 🛛	PV (kW)	Hydro (kW)	Gen (kW)	S6CS25P	Conv. (kW)	Disp. Strgy	Initial Capital	Operating Cost (\$/yr)	Total NPC	COE (\$/kWh)	Ren. Frac.	Capacity Shortage	Diesel (L)	Gen (hrs)
4	70 🖉	7.4	20.7	7.13		9.0	LF	\$ 71,923	884	\$ 82,513	0.112	0.98	0.01	679	839
	7000		20.7	7.13	8	9.0	LF	\$ 73,610	846	\$ 83,746	0.113	1.00	0.00	145	179
	7 20-		20.7	14			LF	\$ 59,872	2,027	\$ 84,141	0.114	0.96	0.00	1,762	1,204
4	7 🗗 🖸	-	20.7		8	9.0	CC	\$ 77,682	824	\$ 87,552	0.119	1.00	0.01		
7	77 🔁 🖻 🖾	7.4	20.7	7.13	8	9.0	LF	\$ 81,620	882	\$ 92,177	0.125	1.00	0.00	130	157
4	′ 👌 🖻 🛛	22.2		14	8	13.5	CC	\$ 63,561	10,314	\$ 187,071	0.254	0.53	0.01	9,365	3,918
	🔄 🔂 🖾			14	16	13.5	CC	\$ 49,228	17,133	\$ 254,404	0.346	0.00	0.01	16,504	5,379
P	/ 🖧 🗷	22.2		21		13.5	LF	\$ 57,802	18,926	\$ 284,453	0.385	0.41	0.00	16,497	7,220

- Micro-hydro is not enough to solely support the load
- Most economic option: combination of micro-hydro plant (20.7 kW), diesel generator (7.13 kW) and PV panels (7.4 kWp).
- 98% renewable penetration
- The national energy tariff of energy in Ethiopia is around 0.04 \$/kWh which is considerably lower than that of the proposed system 0.112 \$/kWh.

Case Study of Hybrid System

 Comparison between Diesel-only, and Diesel-PV hybrid system.

 Introducing PV generation to a diesel based system, reduces the cost of energy and the fuel consumption

HIL simulation for dynamic studies of off-grid systems

Conclusions

- United Nations has set 2030 as a target date for universal access to modern energy services.
- Micro-grids can provide cost-effective and reliable energy in remote areas in diverse ways
- <u>Case study:</u>
- Micro-hydro was the cheapest solution
- The cost was higher than the utility grid
- Introducing PV generation to a diesel based system reduces the cost of energy

0

Thank you for your attention

www.smartrue.gr

kotsa@power.ece.ntua.gr