

PV HYBRID INDUSTRIAL MICROGRIDS IN UNRELIABLE NATIONAL GRIDS

Xavier VALLVÉ, María ANZIZU and Marilena LAZOPOULOU

Trama TecnoAmbiental, Barcelona, Spain

xavier.vallve@tta.com.es

OVERVIEW OF THE FIRM - TTA

- SME Founded in Barcelona in 1986
- Independent International Engineering Consultants highly specialized in Renewable Energy (RE) distributed generation
- Reference in Micro-grids with Solar Hybrid Generation (MSG) Since 1987: Off-grid rural electrification practitioners
- Consolidated experience in each and every phase of a rural electrification project cycle including: Turn-key / O&M / Transversal Issues: institutional, social, regulatory
- Europe, Africa, Latin America, Middle East, Asia, Oceania ...

Member of:

WHAT IS REMOTE?

Different dimensions of Remoteness:

GENERAL CONSIDERATIONS

Technical Considerations

Types of microgrids	Advantages	Shortcomings
Microgrid fed by RE/Hybrid power plant (small systems)	 Improved quality (surge power, load shedding, etc) Lower investment for communities Efficient maintenance Genset backup Lower LCOE 	 Higher technological and organizational complexity If there is a plant failure, everybody is cut off Social rules required to distribute energy Local management required Need for storage systems
Microgrid with hybrid integration of RETs (large systems)	Distributed generationLower LCOE	 Need to ensure grid stability due to intermittency of some RES High penetration of RETs is a bigger challenge
Fossil-fueled microgrid	Low initial investment costsStatus quo is not altered	 High O&M costs High fuel price volatility GHG emissions Logistics risk when transporting diesel

RETD Study, 2012 http://iea-retd.org/archives/publications/remote

NEW PROBLEMATIC IDENTIFIED

Potential of industrial micro-grids in unreliable national grids

- Frequent power cuts
- Critical loads
- Necessity of backup (diesel) generator
- High dependency on foreign supply
- High cost of operation
- Low air quality

Weak grids: countries studied as part of the ENPI project MED SOLAR

ECONOMIC CHALLENGE: SUITABLE BUSINESS MODEL?

Typical schemes to integrate renewables **behind the meter** when reliable grids

SOLUTION FOR UNRELIABLE GRIDS CASE STUDY: LEBANON

- During normal operation of the national grid: self consumption and net metering
- During national grid **blackouts**: the PV plant offsets diesel consumption and curtail surplus

FINANCIAL CHALLENGE CASE STUDY: LEBANON

Energy prices:

2014 National grid prices for industrial customers [USD/kWh]			
Summer (April 1	– September 30)	Winter (October	1 — March 31)
00:00 - 07:00	0,05	00:00 - 07:00	0,05
07:00 – 18:30	0,07	07:00 – 16:30	0,07
18:30 – 21:30	0,21	16:30 – 20:30	0,21
21:30 – 23:00	0,07	20:30 – 23:00	0,07
23:00 – 24:00	0,05	23:00 – 24:00	0,05
Diesel price 1,2 USD/L			
Annual increase of energy price 3%		3%	

Challenges: Uncertainty of blackout occurrence
Uncertainty of future prices

FINANCIAL CHALLENGE CASE STUDY: LEBANON

100% equity
No external support
Subsidised fuel

NEEREA Loan: 0,6% interest rate, 2 years grace period, 10 year amortization.

CEDRO grant: UNDP finances up to 50% or 200k € of project

RENEWABLE ENERGY ARCHITECTURES – MAIN COMPONENTS

Distributed generation

- Utility grid
- PV distributed generators
- Loads

Interconnected microgrids

- Utility grid interface
- PV generator
- Loads
- Storage

Rural autonomous microgrids

- Diesel generator
- PV generator
- Loads
- Storage

Microgrids in unreliable grids

- Utility grid
- PV generator
- Loads
- Storage
- Diesel genset
- Power switch over/transition

MICROGRID FOR UNRELIABLE GRIDS

Objective

Reduce the use of fuel (diesel, utility grid) using:

- PV powered micro grids
- Transient storage systems

Consequences

- Increase security of power supply
- Reduction of operation cost
- Promote SMEs development
- Improve air quality

GRID SITUATION CASE STUDY: LEBANON

Electric Power:

Available capacity: 1,7 GW

Peak load: 2,8 GW

Power gap: 1,1 GW

Electric Energy:

Provided: 11,5 TWh

Demanded: 15,0 TWh

Energy gap: 23%

- Power scheduled cuts across the country (between 3 and 12 hours per day)
- Extensive use of private diesel generators
 - ✓ Poor air quality (specially in summer)
 - ✓ Estimated cost: \$1,3 billion

GRID SITUATIONCASE STUDY: PALESTINE

Electric energy provided: 5,2 TWh

Electricity imports:		
Gaza Strip		
Israel	62,5 %	
Egypt	6,7 %	
Palestine	30,8%	
The West Bank		
Israel	97,8 %	
Jordan	2,2 %	

TECHNICAL CHALLENGE: GRID CHARACTERISATION

Main steps:

- 1. Standardize a grid characterization methodology
- 2. Selection of Measuring points
- 3. Data acquisition in sample site
- 4. Data Analysis & characterization report
- 5. Definition of technical need

TECHNICAL CHALLENGE: GRID CHARACTERISATION

- Voltage events analysis: Lebanon has the worse grid quality among the target countries of MEDSOLAR project
- In Lebanon, events on voltage occurs when the grid goes down and the genset is switched ON

Voltage event	Palestine	Lebanon	Jordan
Over Voltage	No	Yes	No
Worst case		140% of Vn (350 ms)	No
Under Voltage	Yes	Yes	Yes
Worst case	Vmin: 217 V	10% of Vn (10' 340 ms)	30% of Vn (960 ms)
Interruption	No	Yes	No
Worst case		0% of Vn (6h)	

DESIRED FUNCTIONALITIES FOR INDUSTRIAL USERS IN INTERMITTENT GRIDS

Mode 1: AC grid formed by the mains

- Grid power control
- Grid energy control
- Back feed to grid
- Load management
- Reactive power control
- Battery charge control

Mode 2: AC grid formed by the diesel genset

- Fuel reduction
- Load management
- Diesel Power Assistance
- Spinnig reserve management
- Reactive power control
- Battery charge control

Mode 3: AC grid formed by Dual Mode Inverter

- Battery charge control
- Load management

Mode 4: No source forming the AC grid

- Battery charge control
- Load management

TECHNICAL SOLUTION FOR INDUSTRIAL USERS IN INTERMITTENT GRIDS: ENERGY MANAGEMENT SYSTEM

Control necessary when:

 $PV \ge P_N \cdot 0.2$

Genset operation → Adjustment of PV capacity:

 $P_{Gen} \ge P_N \cdot 0.3$

Management of critical and non-critical loads
(Easy critical loads extension if required)

Challenge: universal solution for different communications and compatible with the existing components at the sites

An-Najah National University Hospital – Palestine (MED SOLAR Project)

General specifications			
PV capacity	104 kWp		
3-p Inverter	100 kW		
Dual mode inverter	48 kVA		
Battery capacity	150 kWh (Gel OPzV)		

EMKAN Souk Akkar – Lebanon (MED SOLAR Project)

General specifications		
PV capacity	120 kWp	
Solar Inverter	120 kW & 10 kW	
Dual mode inverter	8 kVA	
Battery capacity 101 kWh (OPzS		

PV Generator

Bullding B

Building A

PV Generator

Tahrir square – Lebanon (MED SOLAR Project)

General specifications		
PV capacity	117 kWp	
Solar Inverter	20 kW	
Dual mode inverter	8 kVA	
Battery capacity	50 kWh	

Solarnet
NICAL - ENERGY - ENVIRONMENT URIEH - METN - OLD ROAD : +961(4)532927 : info@solarnet-online.com

PROJECT:116 KWp PV POWER PLANT AT Liberation Academy Sports Club - Sultaniyeh			Legend: Existing AC Cubics	
TITLE:ELECTRICAL SINGLE LINE DRAWING			AC Cables to be installed by SOLARNET DC Cables to be installed by SOLARNET	
NO:SD-01	REV: 00	SCALE: NTS	DATE: 29/04/15	
Drawn by: RA	Checked by: JP	S	Approved by: JPS	New part to be installed by SOLARNET

Gonaives Hospital – Haiti (UNOPS)

General specifications		
PV capacity 228 kWp		
Solar Inverter	200 kVA	

