Real-Time Microgrid Power Management and Control with Distributed Agents

Christopher Colson
US Western Area Power Administration

Hashem Nehrir Montana State University

2015 Microgrid Symposium Aalborg, Denmark August 27, 28

Background

Work followed one of the recommendations that came out of the

2011 DOE-Sponsored microgrid workshop:

Application of intelligent control for real-time power management of microgrids

Work sponsored by:

US DOE Office of Basic Energy Science

NEC-Labs America

Presentation Overview

- Microgrid (MG) assets and role
- Multi-objective multiagent (MAS)—based microgrid power management
- Simulation results:
 - A distributed MAS-Based microgrid
 - Cooperating MAS-based microgrids for power system self-healing
- Conclusions

Microgrid assets

- Small scale: Several kW to several MW
- Multiple DGs, storage and load
- Can be operated and controlled independently, grid-connected or islanded

Microgrid Role

- Offers an opportunity to shift control burden to the local owner/operator
- Control is easier at the microgrid level than grid level
- Addresses customer-specific needs based on local requirements
- Offers distribution-level demand response offsets capacity addition simply for peaking
- Can make power systems resilient/Self-healing

Challenges of MG Management and Control

- Many challenges exist in implementation:
 - Competing objectives
 - High degree of uncertainty for future conditions (uncertainty of availability of renewable generation – need for stateestimation)
 - Need for a real-time response
- seeking optimal solution to the power management problem complicates the decision-making process further.

Agent-Based Microgrid: The big picture

Generic

Actual MG used

Agents have adequate local information available to them for independent or cooperating decision-making.

MAS-Based Microgrid Multi-objective Operational Decision Framework

Microgrid Power Management with Distributed Agents

Microgrid Parameters

Asset	Rating
Diesel Genset	75kW
Photovoltaic Array	45kW
Storage Battery Bank	12kWh (30kW @ 10 min rate)
Load Center	100kW (1kW increments)

 Java-based agent development environment (JADE) used.

Intelligent agents seek optimal asset dispatch for user-defined goals.

MAS Seeks Tradeoff Solutions for the Multiconstraint, Multi-objective MG Power Management Problem

Representation of a multi-objective, multi-constraint optimization problem and resulting Pareto frontier.

- Constraints: Generation and storage capacities, load constraints, etc.
- Objectives: Minimize cost and maximize performance of MG assets
- Increasing performance increases cost and vice versa

Grid-Connected MG:

Grid Price increases from \$0.15/kWh to \$0.3/kWh

Grid price ↑, Load is shed, Diesel starts, PV remains maximized, revenue ↑

Grid-Connected MG: Grid Price = \$0.15/kWh PV output power decreases from 45 kW to zero

PV output=45 kW

Storage producer agent cost and performance metrics prior to disturbance.

- Diesel OFF
- Battery OFF
- Load = 43 kW
- Grid buys 2 kW from MG at \$0.15/kWh

PV output=0

Storage producer agent cost and performance metrics after disturbance.

- Diesel OFF
- Battery discharges 7 kW @ 70 minute rate
- Load = 43 kW
- Grid sells 36 kW to MG at \$0.15/kWh

Cooperating Microgrids for Resilient and Self-Healing Power System

Healthy system

Faulted microgrid

Each microgrid has an intelligent agent to talk to neighboring MGs.

Off-Grid Microgrids

- No transactions with grid
- Similar objectives to the grid-connected MG
 - Least cost
 - Maximum efficiency
 - Best battery performance

Conclusions

Real-time MAS-based methods are effective for power management of grid-connected and off-grid MGs.

• MGs have the potential of making the grid resilient/self-healing.

Our Direction

To find the optimal solution of the multiobjective problem analytically (directly) with fully distributed MAS – no Pareto frontier.

Representation of a multi-objective, multi-constraint optimization problem and resulting Pareto frontier.

Future work:

Cooperating
 Microgrids
 controlled with
 Hierarchical
 MAS
 framework for
 resilient and
 self-healing
 grid.

Thank you!

Chris Colson: colson@WAPA.GOV

Hashem Nehrir: hnehrir@ece.montana.edu