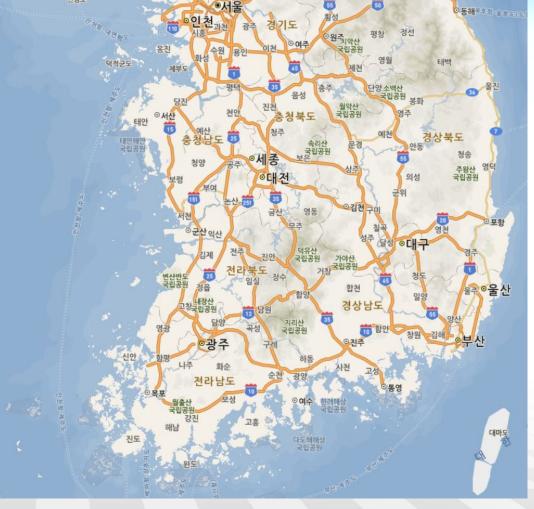

Design and Field Test Results of High Renewable Penetration at a Korean Island Remote MicroGrid

15.8.27

Int. and Int.

Wookyu Chae, Jongnam Won KEPCO Research Institute

Why Remote MG in Korea?

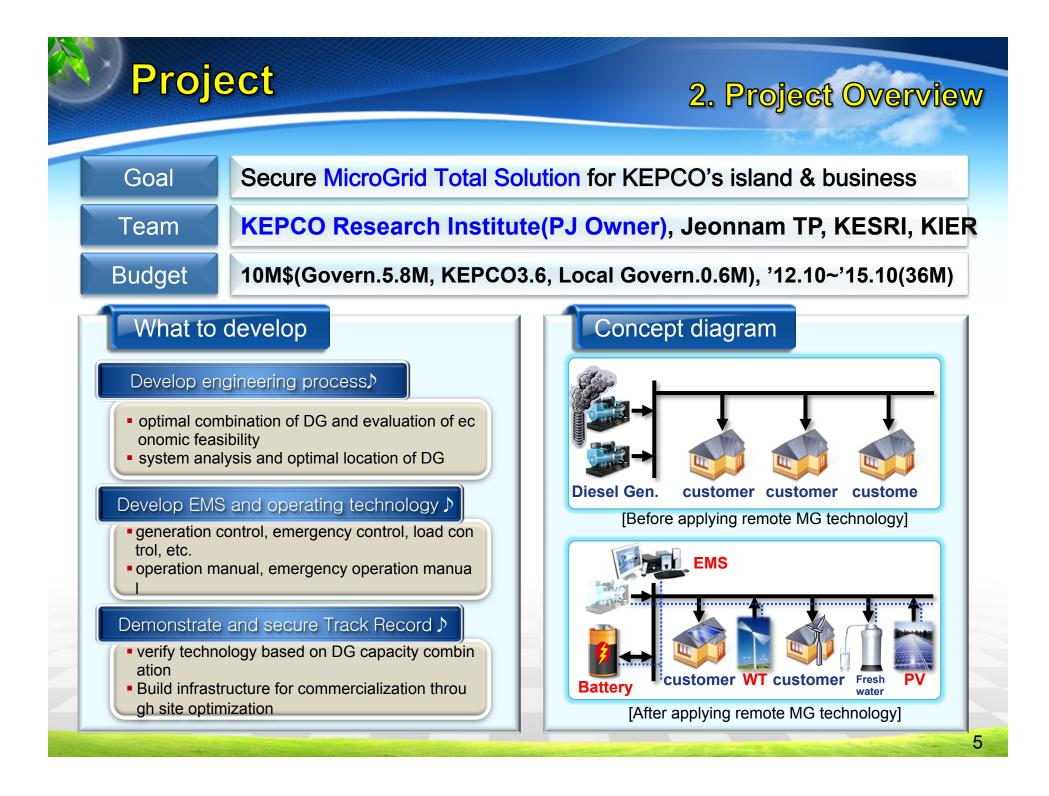

1. Motivations

J 127 diesel power plants's life will be ended within few years

Owner	Number of P lants
KEPCO	63
Local Gov.	22
Inhabitants	42
Total	127

[Typical Power Plant of Korea]

[Many island in Korea]



1. Motivations

Cost of Energy in Korea 0.142 vs 0.587 \$/kWh \$/kWh

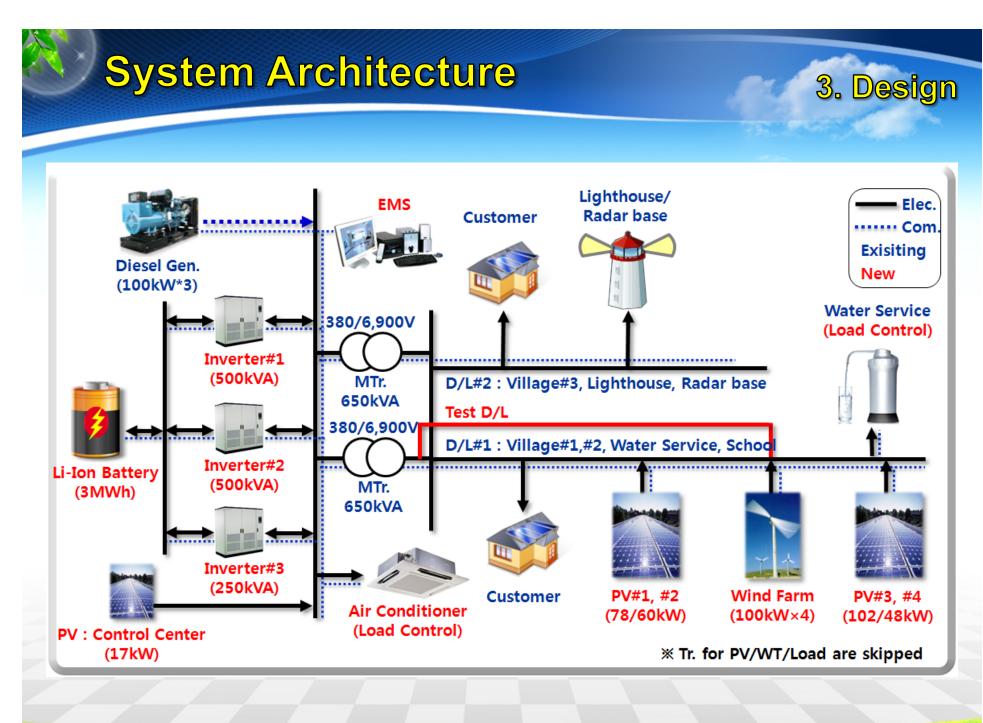
COE in Mainland (2014 year) Source : KEPCO S

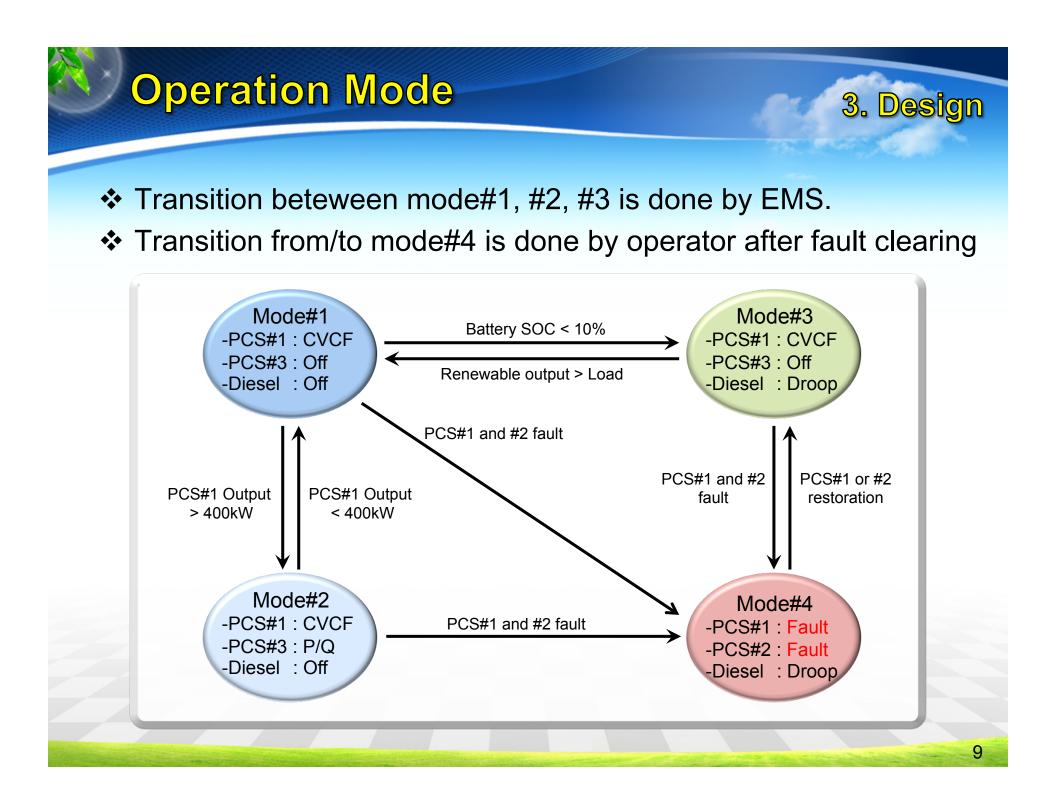
COE in Island (2014 year) Source : KEPCO

Test Island

2. Project Overview

Test Island : Gasado(southern side of Korea)


	Contents	
Location	 Southern part of South Korea Distance from main land : 6km Area : 6.4km⁴ 	
Electrical System	 Genset : 100kW×3 (1993) D/L : 2 line(total length : 8km) 	
Load	 Customer : 168house(286person) Average Load : 96kW (Peak : 173kW, Min : 61kW) Main Load : Radar, Lighting house Water supply 	Seçsan Asin Cheonan Taean D. D. D. B. a. Brin Cheonan Hingsoong Dagleon Sansiu Boryeong Dagleon Sansiu Boryeong Oagleon Gimcheona Gum Gimcheona Gum Buan con Du Geocharag Corversio Geocharag Corversio Ueongeup Verwiggwang Geocharag Gorversio Verwiggwang Geocharag Gorversio Sum-Mokpo Gwangu Gaseol Tongreon
Site	 50% : Owned by local government 50% : Private owned	Haenam Goheung Ubigea Wendo


Design Target

MicroGrid system supplied with 99% renewable energy

3. Design

Classification	Contents	Note		
Energy 99% renewable energy		Energy independent		
No Wind/Sun	1 day	Battery size, Economical		
Emergency	Using diesel generator	WT/PV fault No wind/sun		
For field test	Renewable Capacity divided Exclusive line for test	Renewable mix test No outage at the village		
EMS	Automatic control	System efficiency		
Plug & Play	No communication for small PV	Economical		
Site for WT/PV	Idle site, Roof, Reservoir	Water floating PV		

Main Equipment

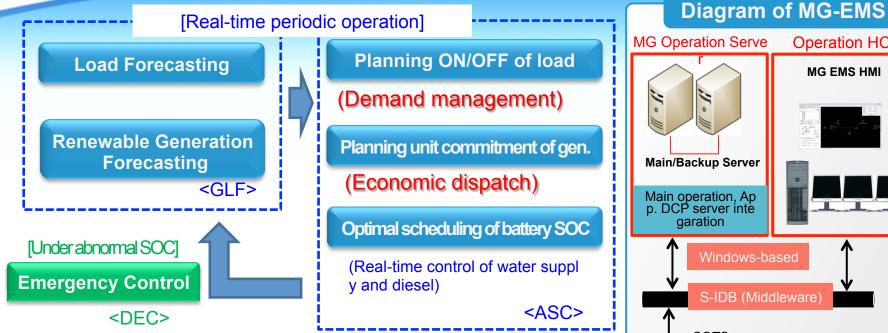
[Monitoring & Control]

[Wind(100kW*4) & Solar Farm(total:314kW]

[Water Floating PV system : 48kW]

[Li-ion Battery : 3MWh]

Main Equipment

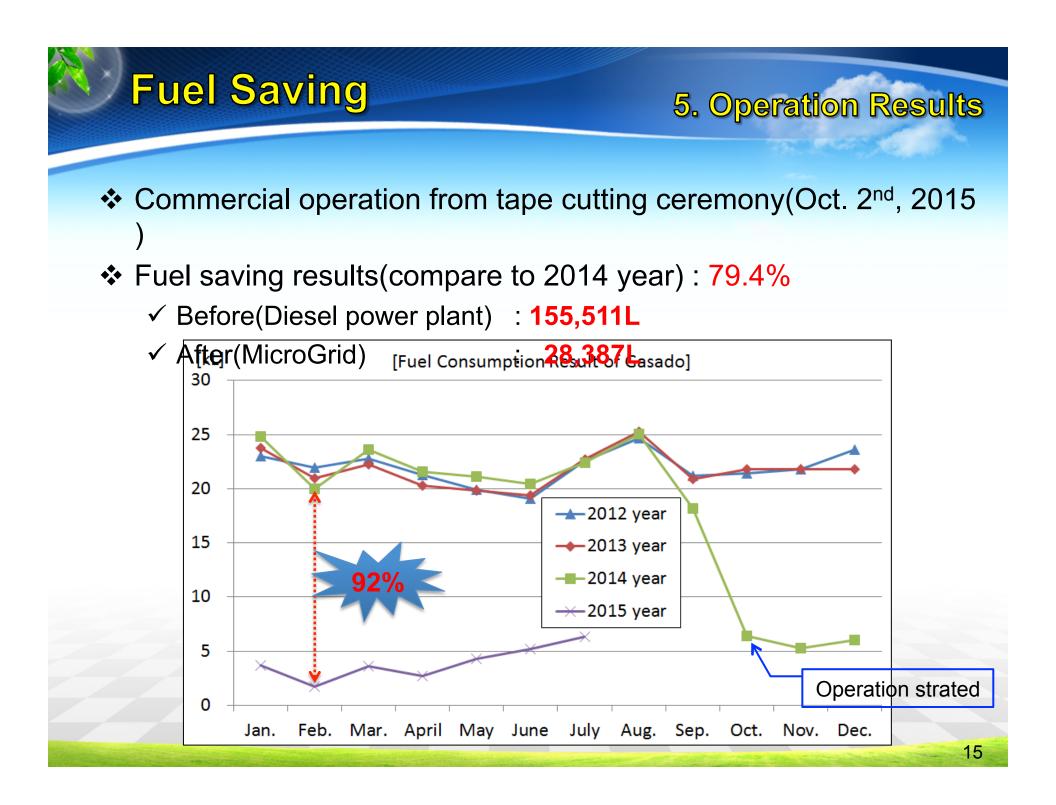


		Specification	Function & Feature				
	EMS	SCADA + Application	Battery SOC management, Forecasting of load & re newable energy, Direct load control, Automation				
	GFI (Grid Forming Inverter)	500kVA*2, 250kVA*1	Frequency & voltage control, P/Q control 500kVA #2 : Backup, 250kVA : for shortage of ratin g				
	Battery	3MWh, Li-ion	Electrical energy storage, 1C-rate, NMC type 3 GFIs are connected to 3MWh in parallel.				
	WT	100kW*4	PMSG+Full converter, Power limitation, Power fact or & Voltage control, LVRT, FRT				
	PV	314kW(8ea)	Power limitation, Monitoring of each module, Water floating PV system for limited site				
	Diesel Gen.	100kW*3	Droop control, Remote on/off				
	Load	Water pump Air conditioner	Water tank is used to energy storage. Battery room temp. control using surplus energy.				

Feature of System

- Inverter-based power system
 - ✓ Inverter maintains voltage/frequency and battery SOC.
- Renewable energy penetration rate of world class level
 - ✓ Penetration rate : 400%(of peak load)
- Automatic operation by EMS
 - Automatic control depending on battery SOC
 : PV / WT / Diesel / Water supply / Air conditioner
- Usable both as commercial operation and as test site
 - \checkmark Various tests are available without outage.
- Demand side management
 - ✓ water tank, air conditioner of battery room
- Design considering growth of Gasa Island
 - ✓ Site selection of WT & PV farm considering tourism resources
 - ✓ Water floating PV : Consideration for limited site of island

Eenrgy Management System



- Surplus power : Real-time optimal demand management
 - Unit commitment and control of water supply
- > Power shortage : Economic dispatch of diesel gen.
 - Unit commitment and control of diesel gen.
- > Abnormal Battery SOC : Emergency control
 - Load control : ON/OFF control of air con. and dummy load
 - Generation control : ON/OFF and generation control of PV and WT

Eenrgy Management System

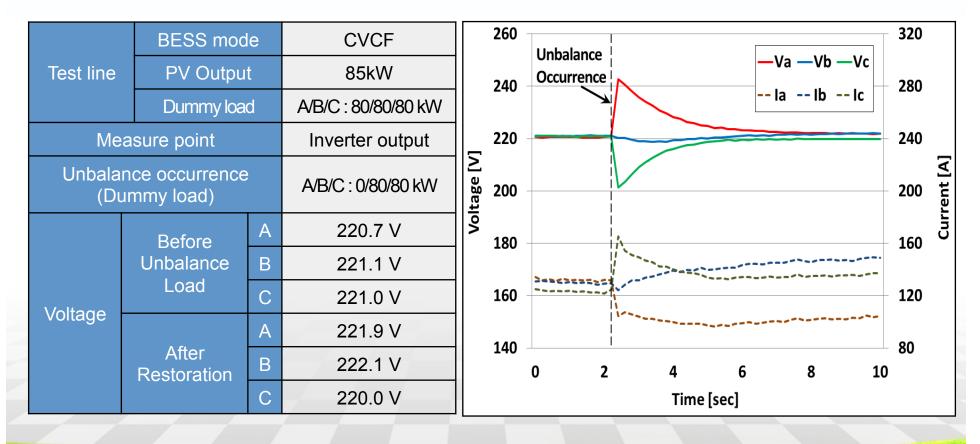
Efficient operation of Gen Set

Fuel efficiency of the gen set was improved by 14.2% using GFI(grid forming inverer).

- ✓ Get set can be operated at the highest efficient region because GFI control the frequency.
- ✤ But, battery system's round-trip efficiency is usually 90~95%.
- ✤ So, gen set should be run in the highest efficiency section.

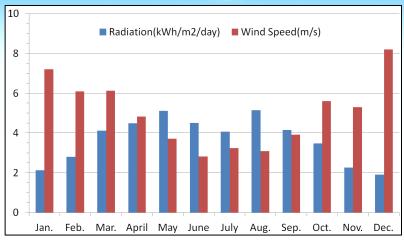
[
	At Diesel Power Plant	At Remote Microgrid				
Operation Type	2 gen-set in parallel during 24Hours	one gen-set with grid forming inverter (GFI) during 24Hours				
Fuel Consumption	766.2 L/24 h	562.7 L/24 h				
Total Production	2319.3 kWh	1946.2 kWh				
Average Power	96.6 kW	81 kW				
Energy per Fuel	3.02 kWh/L	3.45 kWh/L				
Fuel per Energy	0.3304 L/kWh	0.2892 L/kWh				

[Fuel consumption comparison of a diesel generator]

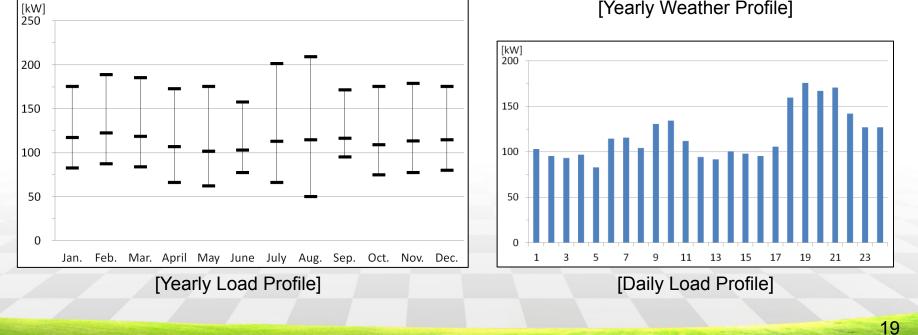

Power Quality 5. Operation Results Frequency maintain ratio(0.2sec sampling) ✓ Previous(Diesel power plant) : 57% ✓ Present(MicroGrid) : 100% [Hz] 61.5 [Frequency comparison between Inverter & Diesel generator] **Maintaining Standard** 61 **Diesel Power Plant** 60.5 60 59.5 59 Using Remote MicroGrid [Duration : 5min, interval: 0.2sec, Measured during 9th Dec., 2014] 58.5 601 801 1001 1201 1401 201 401 1

17

Power Quality


Unbalanced voltage restoration test

 Under unbalanced load, inverter restores unbalanced voltage to the balanced state.



HOMER Simulation

- Radiation : 3.68kWh/m²/day **
- Wind Speed : 5.0m/s @ 30m **
- Temperature : 13.4°C **
- Average Load : 100kW
- ✤ Fuel Price : 0.912\$/L
- Real Interest Rate : 2.98% **

[Yearly Weather Profile]

HOMER Simulation

There are some difference between expected and operation results for PV and fuel consumption.

- ✤ But, there is much difference for WT due to
 - ✓ Frequent stop or output restriction of WT in winter season
 - $\checkmark\,$ Lower average wind speed compared to collected wind speed data

Generator		Unit	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Ave.
Wind	Expected	MWh	67.8	72.0	146.9	123.3	83.6	88.4	97.0
Turbine	Results	MWh	33.3	42.1	56.6	55.7	50.2	31.4	44.9
	Expected	MWh	32.8	21.9	20.4	23.6	25.3	36.4	26.8
PV	Results	MWh	27.7	23.5	15.0	21.1	23.7	35.9	24.5
Diesel	Expected	MWh	17.0	20.4	8.1	5.9	13.0	5.0	11.6
Generator	Results	MWh	20.3	16.8	21.1	12.7	6.2	13.5	15.1
Total	Expected	MWh	117.5	114.3	175.4	152.8	121.9	129.8	135.3
Production	Results	MWh	81.3	82.5	92.6	89.4	80.1	80.9	84.5
Renewable	Expected	%	86	82	95	96	89	96	91
Fraction	Results	%	75	80	77	86	92	83	82
Fuel Consumption	Before	kL	21.8	21.8	21.8	24.8	20.0	23.6	22.3
	Expected	kL	5.1	6.1	2.5	1.8	3.9	1.5	3.5
	Results	kL	6.4	5.3	6.0	3.7	1.7	3.6	4.5

Challenges to Project

6. Conclusion

- Advanced system configuration in Korea
- Vague worrying about WT's noise from the residents
- Graveyard moving
- 200 ton installation crane delivery and co crete dispatch
- Typhoon & Heavy rain
- Steep ground & slope of PV/WT site
- Overnight test for no interruption of electr c power

[Foudation of PV at the sloped site]

[Concrete mixing at the island]

KEPCO developed high penetrated remote Micorgird with EMS

- There is no problem to operate the high penetrated remote Micorgir d using large battery system.
- Mismatch between expected and operation results
 - \checkmark Stop or output restriction of WT in winter season
 - ✓ Lower wind speed compared to collected wind speed data
- Too much dumped energy in winter season
 - ✓ Due to high wind speed in winter season in Korea
 - ✓ We should develop another load(thermal) or storage system.
- Power quality of remote MG is better that the diesel power plant.
- The gen set could be run in the highest efficiency region using th e battery system.

* More reading : Wookyu Chae, Design and Field Tests of an Inverted Based Remote MicroGrid on a Korean Island, *Energies* 2015, 8, 8193-8210, Wookyu Chae

6. Conclusion

MicroGrid, Light the World

August 27, 2015 | KEPCO Research Institute wkchae@kepco.co.kr