

The SmartGen project: an example of DMS development for VPP and Microgrids

Stefano Massucco, Federico Silvestro

University of Genova – Italy

DITEN-IEES Intelligent Electric Energy Systems

11th Microgrid Symposium 27-28 August 2015, Aalborg

SmartGen Project

 "Study, development and validation of methodologies and tools for the management of active power distribution networks including renewable energy sources"

Context: Smart Grids

- Operation of generators of any size and technology
- Load active role in the optimization of operation
- Availability of more information and wider choice of suppliers
- Reduction of environmental impact
- Enhancement of reliability, security and quality of service

Image published in **Consumer Energy Report** http://www.consumerenergyreport.com/wp-content/uploads/2010/04/smartgrid.ipg - All rights reserved

Fundings

 Funded by MISE (Italian Ministry for Economic Development) in the context of the Research Projects for the Electric Systems

Action areas

Advanced Distribution Management System New services for liberalised market operators

Active distribution networks with distributed generation

Electrical infrastructure

Communications

Main objectives

Analyzing scenarios of smart grids and active interaction with the electricity market

- with distributed generation (DG) and storage with the possibility of load control
- to identify main technical and economical constraints
- to define future actors (aggregators, price signals, active demand management)

Defining and implementing the architecture of innovative Distribution Management System

- Interfacing to data acquisition systems and SCADA (Supervisory Control And Data Acquisition)
- State estimation and simulation scenarios
- Management of optimization problems, control of power flow, voltage and supply of ancillary services from DG, and load dispatch
- Study of different distribution management modes: normal, dysfunctional, and/or emergency mode (islanding)

Demonstrating features and benefits in real user cases

- Definition of complex reference scenarios
- Validation of real network functional efficiency
- Integration of real networks and simulation in pilot sites

Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture Polytechnic School, University of Genoa

Project Consortium

University of Genova - DITEN

Scientific coordinator

DMS architecture, technology survey and enhancement, dissemination

University of Bologna - DIE

DMS advanced functionalities and monitoring interfaces

Softeco Sismat S.r.l.

Project coordination

System integration, automation and communication software, wholesale market management

s.d.i. S.p.A.

SCADA & DMS design and implementation, innovative power network management

Industrial research

Enel Engineering and Research

System requirements, DMS architecture definition, piloting and demonstration

Industrial infrastructure research

START: January 2011
DURATION: 36 months

COSTS > 2.8 M€

Financing = 1.1 M€

The product of the project

Smartgen has developed a platform that "extends" a DMS with new features

Smartgen architecture

SmartGen functionalities

- Distribution State Estimation (ASE)
- Load Forecast (ALF)
- Generation Forecast (AGF)
- Optimal Reconfiguration (AOR)
- Working Point Optimization (APO)
- Working point Losses optimization (AWL)
- Fault Location (AFL)

Multi-level optimization

The Common Information
Model (CIM): a power
industry standard adopted by
IEC to allow different
applications to exchange
data about the configuration
and the status of a power
network

CIM Architecture

Field Testing Phase – Real Networks

- The ensemble of pilot sites was chosen in order to test (in simulated and/or in field) all the SmartGen functions:
 - State estimation
 - Load/generation forecast
 - Optimization of the working point
 - Optimal (re-)configuration
 - Fault location
- Three sites are identified sites because:
 - They allow to apply and test a comprehensive combination of the DMS functions
 - They already have a good degree of instrumentation
 - More activities aimed at the installation of additional instrumentation will be possible

VPP – University of Genoa experimental micro-grid

University experimental micro-grid

- Generation and network components
- 19,74 kW PV plant
- Bidirectional inverter (10kW-12kVA) with batteries control system (storage system lithium-ion battery: 4 modules (2,2 kW-48 V))
- Controllable resistive inductive load (10 kW 12 kVAr) for islanding scenarios (storage + PV+ load)

Data Acquisition System

- Monitoring system for generation and weather data acquisition (radiation, ambient temperature, retromodule temperature)
- Acquisition system for electrical variables (voltage, current, power, frequency, SOC) with sampling values per second
- Indipendent acquisition channels (for storage, PV and PCC) and transmission over LAN on University network.
- Development of Mixed-Integer algorithms

IEES (Intelligent Electrical Energy Systems) Laboratory - DITEN

Other significant site with PMU and smart meters installation. This site is located in Sanremo (AMAIE)

Experimental distribution network

Livorno Experimental Area

- Main DMS SCADA functionalities
 - Load/generation forecasting
 - · Optimization of DER working point
 - Virtual islanding operations
- Possibility of field tests with no impact on the DSO
- MV and LV internal network available
- Assets involved in SmartGen demo

Generation

- PV 20 kW
- ORC 500 kW
- T100 100 kW

Loads and Storage

- Storage systems 90 kW
- water pumps 2x50 kW
- fans 2x70, 50 kW
- motors 120, 80 kW

Area overview and main SmartGen Elements

Real Distribution Network test case

Sanremo distribution network -

The network is composed of

- A primary substation (HV/MV 132/15 kV)
- 10 MV feeders, typically managed in a radial structure, departing from the substation
- 115 km of MV lines, both cables and overhead lines. MV network managed in compensated neutral
- ~ 200 secondary substations (MV/LV 15/0,4 kV), among public and private ones
 - Of which about 10% remotely controlled
- ~30.000 users (27.000 for domestic use, 15 for industrial use, 3.000 other)
- ~100 PV plants
 - 1 x 470 kW in MV
 - 10 x (10-100kW) in LV
 - Domestic < 6 kW

Smartgen installations at AMAIE Sanremo

- HV/MV site full measurements
- 3 feeders fully monitored
- PV plant (470 kWp)
- 2 PMU Power Measuring Units
- Meteo forecast

AMAIE Sanremo network

the goal is to perform:

- Analysis of the <u>voltage profiles</u> and congestion in the absence and presence of PV distributed generation (connected both LV and MV)
- Study and verification of algorithms of <u>State Estimation</u> in distribution networks, load forecasting and production of photovoltaic
- In order to validate these studies, the system has been equipped with a monitoring system and remote reading of different MV/LV substations.
- Comparison measurements / simulations for other studies

Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture Polytechnic School, University of Genoa

Load modeling

Distribution State Estimation

DSE

Conclusions

- The proposed DMS architecture and prototype can constitute a solid basis for the implementation of DMSs that allow the *real-time management of energy distribution network*, including the control of generation and load.
- The SmartGen DMS includes functionalities capable of supporting the involvement of the electric demand as a resource, including load forecasting, load aggregation, and generation forecasting. These facilities will be granted as a service to DSOs, load aggregators, market operators, and single consumers.
- Through SmartGen services, those users will be enabled to optimize their business from either a technical or an economical perspective.
- The adoption of the *Common Information Model (CIM)* provides the SmartGen DMS with interoperability, allowing the interfacing with any other CIM-based system component.

Thank you for your attention

Federico Silvestro

University of Genoa, Italy
Department of Electrical, Electronic, Telecommunication
Engineering and Naval Architecture

federico.silvestro@unige.it

DITEN-IEES Intelligent Electric Energy Systems www.iees.diten.unige.it

References

- S. Bianchi, A. Borghetti, S. Massucco, F. Napolitano, C.A. Nucci, M. Pentolini, G. Petretto, S. Scalari, F. Silvestro, G. Troglio, G. Viano, "Development and Validation of Innovative Methods and Tools for the Management of Active Distribution Networks: the SmartGen project", Medpower 2014, Athens 2-5 November 2014
- F. Adinolfi, G. M. Burt, P. Crolla, F. D'Agostino, M. Saviozzi, F. Silvestro, "Distributed Energy Resources Management in a Low Voltage Test Facility", Industrial Electronics, IEEE Transactions on , doi: 10.1109/TIE. 2014.2377133
- S. Massucco, S. Bianchi, A. Borghetti, F. Napolitano, M. Pentolini, G. Petretto, L. Poli, S. Scalari, F. Silvestro, G. Troglio, "Development and Validation of Innovative Methods and Tools for the Management of Active Distribution Networks with Renewable Generation", 2nd IEEE- International Energy Conference and Exhibition (EnergyCon2012), Firenze, 9-12 September 2012, DOI: 10.1109/EnergyCon.2012.6348245
- A. Borghetti, "Using mixed integer programming for the volt/var optimization in distribution feeders," Electr. Power Syst. Res., vol. 98, pp. 39-50, May 2013
- F. Adinolfi, F. Baccino, F. D'Agostino, S. Massucco, F. Silvestro, "An Architecture for Implementing State Estimation Application in Distribution Management System (DMS)", IEEE ISGT 2013, 6 9 October, Copenhagen
- S. Rahimi, M. Marinelli, F. Silvestro, "Evaluation of requirements for Volt/Var Control and Optimization function in Distribution Management Systems", 2nd IEEE- International Energy Conference and Exhibition (EnergyCon2012), Firenze, 9 12 September 2012, DOI:10.1109/EnergyCon.2012.6347777
- F. Adinolfi, F. D'Agostino, M. Saviozzi, F. Silvestro, "Pseudo-Measures Modeling Using Neural Network and Fourier Decomposition for Distribution State Estimation" IEEE ISGT 2014 Europe, Istanbul, October 2011

pscc2016

GENOA

June 20-24, 2016 Genoa, Italy

www.pscc2016.net

Welcome to PSCC 2016 in GENOVA

20-24 June 2016

www.pscc2016.net

