Microgrid R&D at BC Hydro

Golden Energy Storage Project

July 21, 2010

Helen Whittaker MBA, PMP
Office Chief Technology Officer
e: helen whittaker@bcovdro.com

Jaime Peralta MSc, PEng Distribution Planning e: jaime peralta@bchydro.c

FOR GENERATIONS

BC Hydro objectives

BC Hydro microgrid R&D

Golden substation and feeder network

Golden substation peak load profile

Risk mitigation against exceeding capacity

- Voltage conversion 12kV circuits to 25kV
 - Increases transformer capacity from 31.2 MVA to 36 MVA
- Columbia Valley Transmission 230kV to Kicking Horse substation
 - 69kV ring bus to Golden removes transmission capacity constraint
- Customer curtailment agreement
 - Addresses peak issues on 12F51 but not on 25 kV circuits
- Energy storage (2 MW)
- Upgrade to transformers
 - Demand expected to exceed 36 MVA by FY2015 without storage, FY2017 with storage
- Customer Standing Offer Program (SOP)
 - Potential to provide additional energy does not address capacity

Reliability numbers for Field

Reliability	Fiscal Year			BC Hydro average
	2007	2008	2009	(F2007 – F2009)
Average duration of customer interruptions (in hours)	5.2	3.6	3.3	2.29
Major Events		8.0		+0.98
Average number of Interruptions per customer	7.1	10.2	6.9	1.51
Major Events		0.8		+0.69

BC Hydro opportunity

- Solution to near-capacity substation at Golden
 - Proposed use of 2 x 1 MW battery storage (at Golden and Field) to bridge capacity gap prior to transmission upgrade (peak shaving)
- Solution to poor reliability indices for Field
 - Proposed use of 1 MW battery storage at Field and demand response to provide back-up energy source (islanding)
- Use knowledge for future initiatives
 - Defer capacity (transmission or generation) in other locations
 - Support for intermittent generation from renewable sources
 - Energy management of distributed energy resources
 - Alternative energy source to diesel generation as back-up

Golden substation and feeders schematic

Schematic showing point of isolation for islanding

Project challenges: Business case

- Business case approval
 - Based on deferred transformer upgrade and avoided cost of diesel
 - CEF award required to make case
- Major costs
 - Battery units
 - Integration services (PCS)
 - Protection, Control & Telecom
 - Upgrades to distribution network
- Major benefits
 - Immediate benefits
 - Improved reliability for the community of Field
 - Ability to mitigate exceeding capacity of substation
 - Avoided cost of diesel
 - Deferred transformer upgrade costs
 - Future benefits
 - Potential to relocate the BESS defer future upgrade costs
 - Gain critical knowledge in the use of storage for islanding and integration of renewables
 - Storage technologies will form an integral part of BC Hydro's future asset base for the purposes of peak shaving, integrating renewables and managing multiple distributed resources

Project challenges: Procurement

Battery procurement

- Challenging to develop a specification given the lack of experience in this area
 - Used external expertise
 - Developed the spec based on functional requirements
 - Peak shaving
 - Islanding
- Posted RFP for batteries and received 5 responses with 5 different technologies
- RFP criteria included technical specifications, references showing proof of performance, cost, safety and environmental aspects
- Currently negotiating with lead-proponent

Risks

- Schedule: Unable to post RFP for systems integrator until the battery contract is complete
- Performance: Canadian extreme winter conditions challenge battery technologies
- Operations: Lack of safety standards

Project challenges: Site selection

- Original preferred site in Field
 - Close to load centre
 - Potential to share resources with waste water treatment plant
 - High visibility from road requiring masking
 - Limited space for building
 - Geotechnical study showed possibility of instability
- Moved to 2nd option site
 - Advantages in extra space and good geotech
 - Disadvantage in distance from load centre (about 5km)
- Environmental permitting
 - Proceeding as planned
 - Footprint increased to allow for building due to potential cold weather conditions

Project challenges: Telecom design

- Remote, mountainous location of Field
 - No microwave
 - Satellite is difficult
 - Potential to use lease line
 - PLC subject to outage
- Continuous monitoring of battery requirement
 - Lease line disadvantage if running along the same poles as the distribution line
- Local communications between PCS and isolation devices (switch)
 - Wimax or 220 radio considered
 - Proposal for fibre continuous link concern is outage

Project challenges: Engineering design

- Protection Coordination and control of PCS and feeder switching devices
- Automation of switching sequences for islanding and re-synch
- Ensuring protection of equipments and stability of system
- Risk mitigation
 - Steady State and Dynamic simulation studies
 - Testing during commissioning
 - Use of experienced power system integrator resources
 - Lessons learned from AEP and others

Project timeline

Project outcomes

- Performance measurement
 - Project implementation metrics
 - Load profile data at batteries and Golden substation
 - Battery metrics: Efficiency, charge/discharge profiles
 - Reliability metrics for Field: CAIDI, SAIFI
 - System metrics: Response time, reliability of automation
- Deliverables
 - BC Hydro Storage Deployment and Integration Guideline 2013
 - BC Hydro Case Study Report 2014
- Knowledge dissemination

