

Economic Analysis and Optimal Design on Microgrids with SS-PVs for Industrial Applications

Dr. Liuchen Chang

lchang@unb.ca

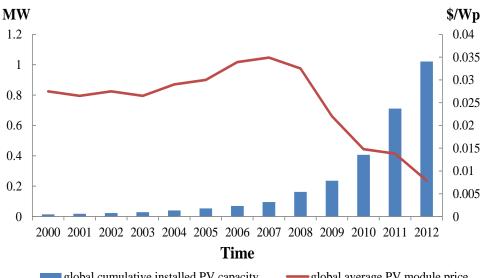
Dr. Haibo Xu

xuhb@eastups.com

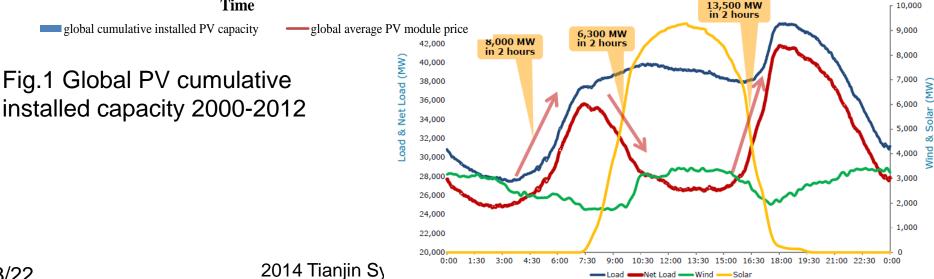

EAST Power Hefei University of Technology

Outline

- 1. Introduction
- 2. Structure of microgrid with SS-PV PVs
- 3. Evaluation indices for the microgrid with SS-PVs
- 4. Optimal design of PV microgrid for industrial applications
- 5. Case studies
- 6. Conclusions



1. Introduction


1.1 Background

E4ST

The developing trend of PV systems is in two directions :

1. Large-scale grid-connected PV systems(LS-PV) 2. Small-scale PV systems(SS-PV) integrated with other distributed generators in microgrids

1.2 Development of SS-PVs

- > 1. Used in remote communities
- 2. Used as distributed generators, including building integrated photovoltaic systems (BIPV)
- > 3. Based on the microgrid concept

Advantage

- 1. Facilitating the integration of renewable energy systems
- 2. Increasing the reliability and power quality

Disadvantage

1. Low economy efficiency in general

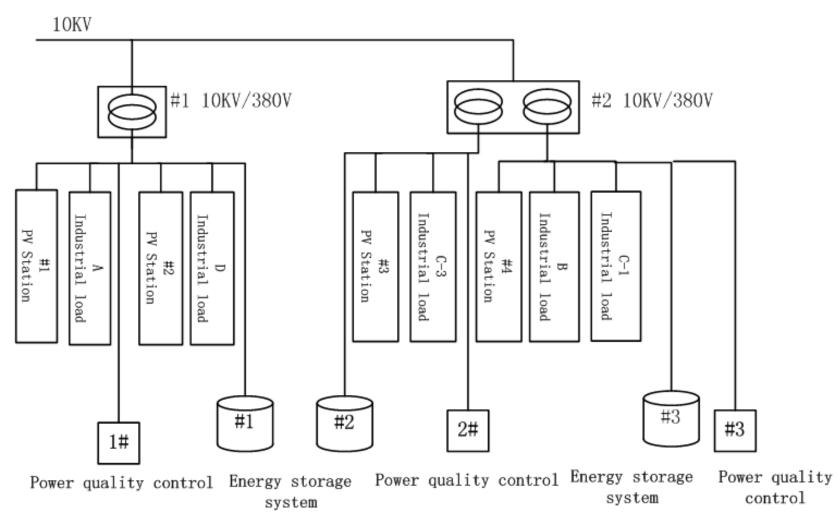
- 1.3 Some research on microgrids with PVs
 - > On the economic evaluation
 - Less focus on the economic evaluation of the emission reduction
 - benefits, especially for the non-back-feeding systems.

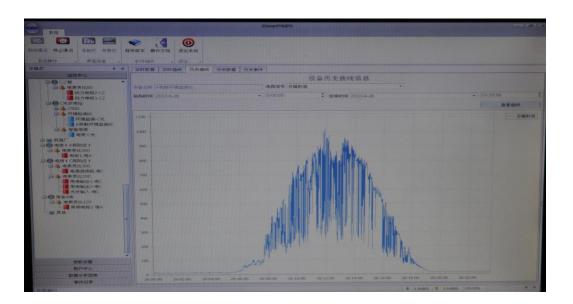
> On optimal design

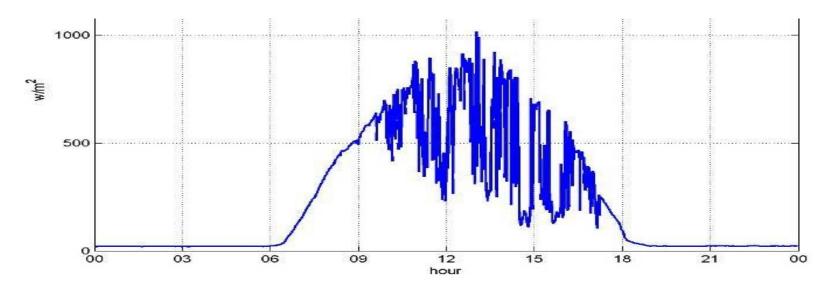
Mostly for the island system, but rarely for grid-connected system

2. Structure of Microgrid with SS-PVs

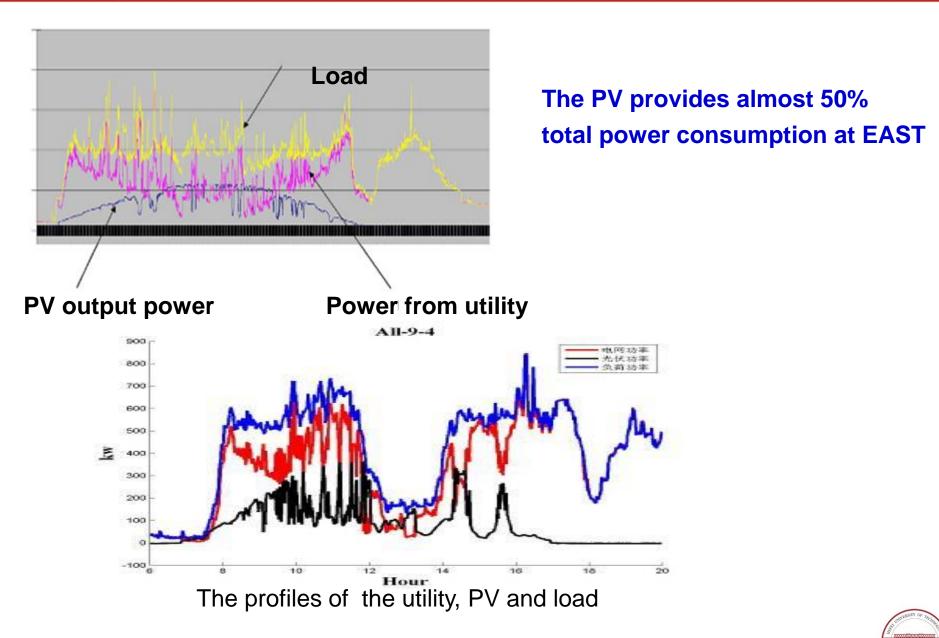
2.1 2MW industrial photovoltaic microgrid installed at EAST

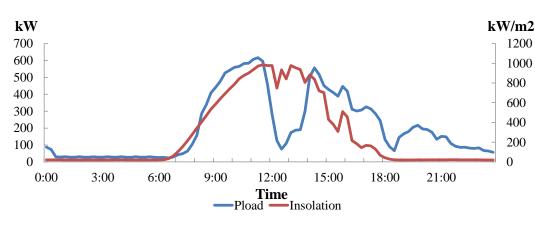

Total installed capacity: 2MW (500KW completed)


Configuration of Microgrids with SS-PVs installed at EAST



Normal PV output power characteristic in coastal areas: fluctuate frequently and drastically





2.2 Operation strategies of the microgrid with SS-PVs

In order to reduce the cost of electricty, an effective way is needed to minimize the difference of the electricity demand between the peak and valley in different periods every day.

Fig.3 Typical daily load curve of the factory

- Calculating the evaluation indices of the system
- Economic analysis based on an optimized design model
- Energy management strategy for the PV system
- Sensitivity analysis of the impact of different installation sites on the system

3. Evaluation indices for the microgrid with SS-PVs

3.1 Levelized Energy Cost (LEC)

$$C_{LEC} = \frac{C_{tot} \cdot \frac{r(1+r)^{N}}{(1+r)^{N} - 1} + C_{rep} + C_{om} + C_{buy} - C_{ERB}}{E}$$

C_{tot}	the total initial investment of the system
C_{rep}	the annual replacement cost
C_{om}	the operation and maintenance cost
C_{buy}	the annual cost of electricity purchase
C_{ERB}	the benefits of emission reduction
E	the annual energy output of the system
r	the interest rate
N	the life circle of the system

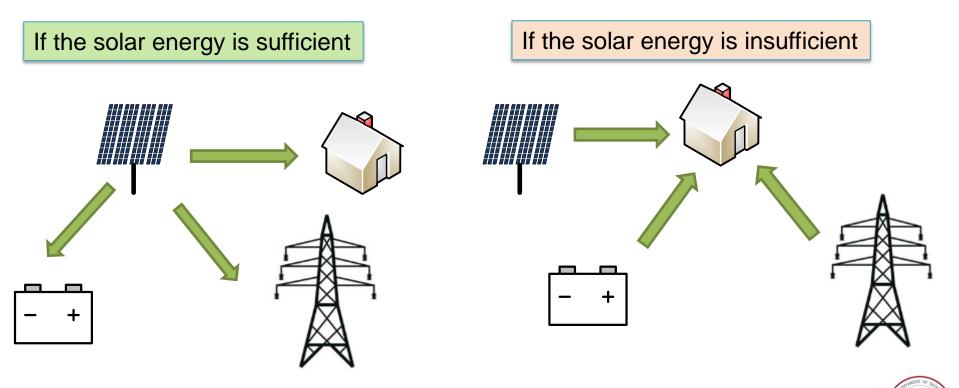
3.2 Emission Reduction Benefit (ERB)

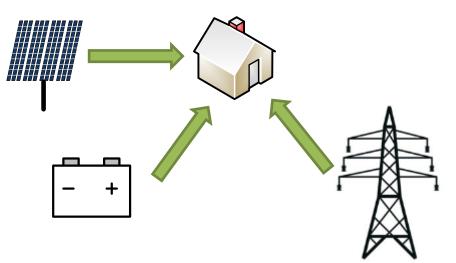
$$C_{ERB} = \sum_{i=1}^{4} (E_{PV} * \text{Emi}_i * Env_i)$$

- E_{PV} the annual power output of PV in the microgrid
- Emi_i the emission of four different pollutants in producing 1 kWh of electricity
- *Env_i* the corresponding environment cost

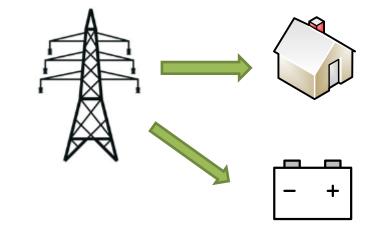
3.3 Payback Period (PBP)

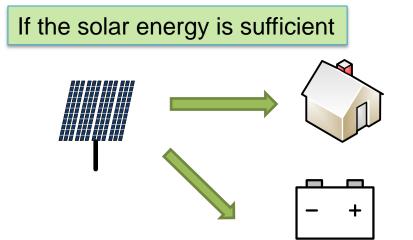
$$PBP = \frac{C_{tot}}{Q} \qquad Q = \left(p \cdot E - C_{rep} - C_{om}\right)$$

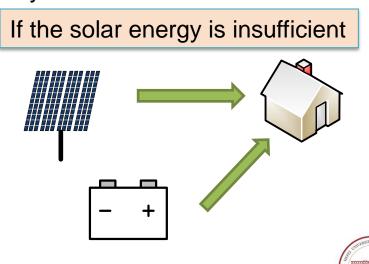

- *Q* annual cash flow of the system
- *p* the electricity price
- *E* the annual energy output of the system


4. Optimal design of PV microgrid for industry

- 4.1 Energy Scheduling Strategy
 - 1) If it is allowable to sell the electricity to the utility:
 - (a) During the peak period




(b) During the flat period



(c) During the valley period

2) If it is not allowable to sell the electricity to the utility

4.2 Optimal design model

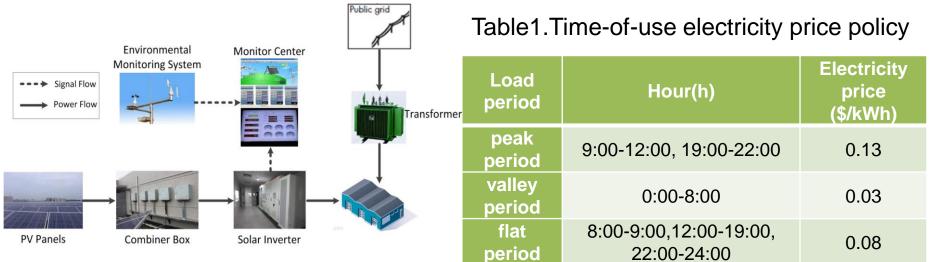
1) The objective function

$$f_{\min} = C_{tot} \cdot \frac{r(1+r)^{N}}{(1+r)^{N} - 1} + C_{rep} + C_{om} + C_{buy} - C_{ERB}$$

C _{tot}	The total initial investment of the system
r	The bank interest rate
Ν	The life circle of the system
C _{rep}	The replacement cost
C _{buy}	The electricity purchasing cost
C_{ERB}	The benefits of emission reduction

2) Constraints $P_{PV} + P_{Bat} + P_{buy} = P_{load}$ $0 \le P_{PV} \le P_{MPP}$ $I_{d,\max} \le I_{Bat} \le I_{c,\max}$ $SOC_{\min} \leq SOC \leq SOC_{\max}$ $SOC_{\log} \leq SOC \leq SOC_{\max}$

during peak and vallay period during flat period


 $\eta \geq \eta_{Desired}$

P _{PV}	the output power of photovoltaic array		
P _{Bat}	charge or discharge power of the battery		
P _{buy}	the purchased electricity of the system		
P _{load}	the load power		
l _{Bat}	charge or discharge current of the battery		
SOC	the state of the charge of the battery		
SOC _{min}	the minimum SOC of the battery		
SOC _{low}	a set value which avoids that the battery is over discharged during the flat period		
η	the self-sufficiency ratio during the peak period		

5. Case studies

Fig.4 The studied system at EAST, China

Table 2. Optimization result of the 500kW PV microgrid for industries

Units	Capacity	Ctot(\$)	Crep(\$/year)
PV	500kW	500000	0
Capacity of Batteries for the non-back feeding system	1150kWh	110000	35000
Capacity of Batteries for the back-feeding system	1430kWh	138000	43800

5.1 The simulation results in four scenarios

1) Non-Back-Feeding System Without Batteries

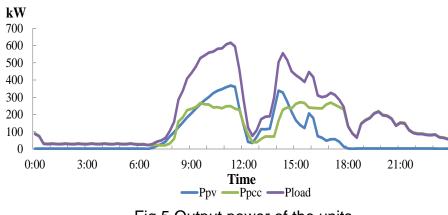
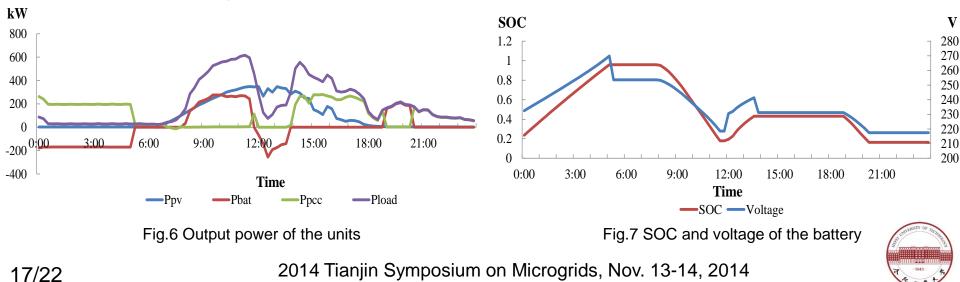



Fig.5 Output power of the units

3) Back-Feeding System Without Batteries

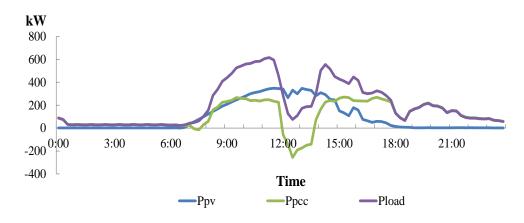
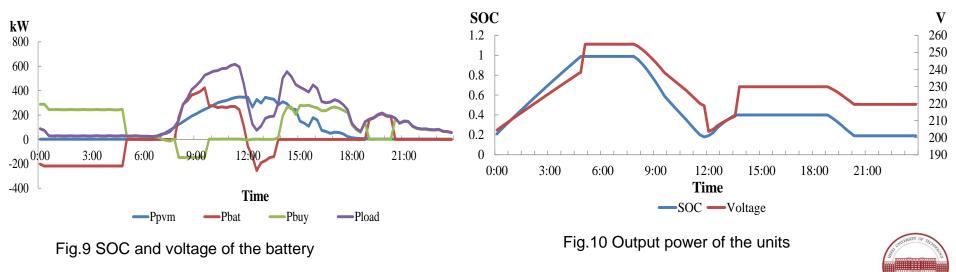



Fig.8 Output power of the units

4) Back-Feeding System With Batteries

18/22

5.2 Three evaluation indexes

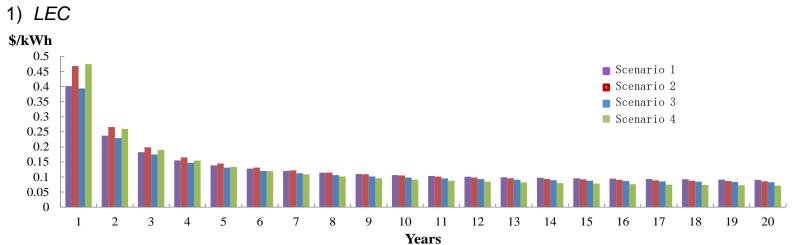


Fig.11 LEC of the system at different scenarios



Fig.12 Reduction of pollutant emission of the system before and after the introduction of the battery

3)PBP

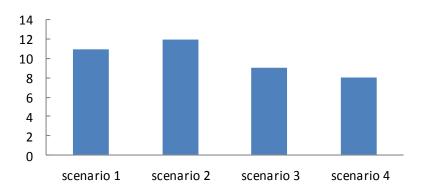
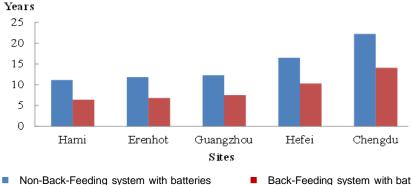


Fig.13 PBP of the system at different scenarios

• 5.3 Sensitivity analysis

Table 3. Summary of the sensitivity analysis

Parameter	Base value	Changed to	change in LEC (%)	change in PBP (%)
Initial investment cost	500000 \$	475000\$(-5%)	-1.62	-4.05
		450000\$(-10%)	-3.25	-8.1
Operation and maintenance	0.8 \$/kW	0.74\$/kW(-10%)	-0.04	-0.09
cost		0.88\$/kW(+10%)	+0.04	+0.11
Battery cost	96.77 \$/kWh	91.93(-5%)	-1.25	-2.11
Ballery Cost	90. <i>Π</i> φ/κντι	87.1(-10%)	-3.45	-4.21
Cycle efficiency	80%	70%	+2.34	+0.03
Cycle enfolency		90%	-1.87	-0.04
FiT	0.19 \$/kWh	0.21(+10%)	-3.14	-3.99
	U. 19	0.23(+20%)	-6.25	-7.58
Allowable level of reverse	20%	10%	+7.02	+10.31
(% of the installed system capacity)		30%	-2.06	-5.41



5.4 Calculation results for microgrids installed at different sites

Table 4. Region classification by distribution of solar energy resource in china

Class of Regions	Total annual insolation (MJ/m ²)	Daily solar insolation (kWh/m ²)	Regions
First level	6680 ~8400	5.1 ~6.4	Ningxia, Gansu, northern Xinjiang, western Tibet
Second level	5850 ~6680	4.5 ~5.1	Hebei, Shanxi, northern, central Gansu
Third level	5000 ~5850	3.8 ~4.5	Guangdong, Shandong, Liaoning, Jiangsu, northern Anhui
Forth level	4200 ~5000	3.2 ~3.8	Hunan, Hubei, Zhejiang, southern Anhui
Fifth level	3350 ~4200	2.5 ~3.2	Sichuan, Guizhou

Back-Feeding system with batteries

Fig.14 The LEC of microgrids installed at different sites

Fig.15 The PBP of microgrids installed at different sites

6. Conclusion

- The optimized back-feeding microgrid with SS-PVs and batteries can bring the most economic and emission reduction benefits to the customers and society.
- The sensitivity analysis of the impact of various parameters and different installed sites for the microgrid system has also been performed in this study.
- The economic analysis and optimal design of the PV microgrid for industrial applications provided a reference for the application of similar projects.

