MANAGING DISTRIBUTION SYSTEM RESOURCES FOR IMPROVED SERVICE QUAILTY AND RELIABILTY, TRANSMISSION CONGESTION RELIEF, AND GRID SUPPORT FUNCTIONS

or

MAUI SMART GRID PROJECT

Hawaii Natural Energy Institute University of Hawaii at Manoa

Maui Electric Company, Ltd.

Hawaiian Electric Company

GE Global Research
United States - India - China - Germany

GE Energy

Sentech, Inc.

MAUI SMART GRID PROJECT – Project Objectives

To develop and demonstrate a *distribution automation* solution that *integrates dispatch of distribution assets* (distributed generation, energy storage, demand response, renewable energy, and distribution automation) *and bulk power assets* (central generation, energy storage, renewable energy) to achieve systemlevel benefits.

- Reduce distribution peak loading by 15% or more
- Improve service quality through integrated volt/var control
- Enable consumers to manage their energy use to minimize electric bills and utilize on-site renewable energy
- Support grid stability (regulating and spinning reserves)
- Enable greater utilization of as-available renewable energy sources

MAUI SMART GRID PROJECT — Equipment Involved

Bulk Power

- SCADA/EMS
- Central generation through AGC
- Wind farm
- MW-scale energy storage

Distribution

- Distribution management system
- Feeder and substation monitoring
- Switched capacitors and LTC
- Regulators
- Large-scale PV and advanced inverter (tentative)
- Distributed generator (possible)

Customer

- Responsive loads
- Building energy management system
 - Commercial BEMS (tentative)
 - Home energy management system
- "Smart" meter
- Energy use display (dashboard & Web meter options)
- Energy storage
- PV with advanced inverter
- Residential energy efficiency

Maui Smart Grid Functional Diagram

Ε **Standard** Apps: Network Mgmt FEP M SCADA A Outage Mgmt Network Analysis

Operator

Demand Mgmt

Home Response Estimation **Shed Capacity Aggregation Operator Decision** Disaggregation to Nodes Home Selection

Trans. level grid support

Load-following Intermittency management Congestion reduction

Volt/Var Control

Minimize Losses and Control Voltage Profile **Operating Constraints:**

- Vmin<Vbus<Vmax
- Minimum number of switching
- Max tap jumping steps Power Flow Solver Load Forecasting/Estimation

Available generation, load, energy price, forecasts of all the

MECO EMS

Economic Dispatch Unit commitment

Deferrable, sheddable load, actual loads deferred/shed

Historical data,, amb temp, cost of gas/elec, grid status. Elec. price forecast.

On/off

Cap-banks

Tap Value

LTC/VR

Available generation, load and forecasts. energy price

Optimal Dispatch

Substation DGs

Bulk **Storage**

kWh, time

Forecasted kW, wind speed, ramp rate, curtailments

Wind plant **Management**

Home Energy Manager Optimal thermostat

Setpoints for all the thermal zones

Optimal water tank temperature setpoint;

Controlling and managing loads:

Providing total electricity and fuel costs.

kW, kVAR,

DER Manager

??

MAUI SMART GRID PROJECT — Technical Challenges

Developing a *general* Smart Grid platform and architecture

- Hierarchical control system, independent power producer, distribution microgrid substation/feeder, distributed generation and storage (conventional or renewable), customer (residential, commercial, institutional, industrial)
- Basic elements of the Smart Grid data, sensors, communications, controllable equipment, applications (models and commands)
- Recognize that applications can run at any level (see "hierarchy"), using data from any level. Applications need to be prioritized to avoid command conflicts.
- Incorporating legacy equipment (with proprietary protocols)

Not overwhelming the system dispatcher Developing integrated, *secure* communications systems

Maui SMART GRID - Benefits

MECO

- Improved grid stability
- Reduced use of petroleum
- Better distribution voltage management
- Incorporate more as-available renewable energy
- Integration of generation dispatch, IPP, demand response, AMI, distribution management, outage response functions

IPP

Sell more energy

Customer

- Improved service quality (voltage management)
- Better power purchase agreement for on-site energy (lower energy bills)

State of Hawaii

- Less petroleum use
- More renewable energy

DOE

- Distribution management system for multi-asset active microgrids
- Smart Grid architecture general solution for integrating multiple Smart Grid functions at customer, distribution, transmission, generation, IPP levels

Maui SMART GRID - Successes to date

- Identified demonstration site that had to change due to economic downturn
- Data collection and model development
- Progress on architecture design cooperation of utility (planning, operations, customer services), customers, independent power producers, vendors
 - HNEI is moderator / referee
 - Nobody sent to the penalty box for fighting yet
 - We are indeed arriving at a solution that meets all stakeholders' objectives

Maui SMART GRID – Where are we now?

Planning

- Selecting functions, feeders, substations, customer premises, communications
- Choosing equipment and integration/interconnection points

Design

- Smart Grid architecture and control hierarchy
- Information flows and communication links
- Functional specification of the demonstration
- Incorporating MECO and HECO demand response, AMI, AGC, etc. functions

Development — just starting

- Adapting existing equipment, applications (e.g., ENMAC, wind turbine controls)
- Developing and validating feeder models
- Beginning development of one of the residential responsive load options – GE Residential Energy Management optimizer with smart appliances